Math 246B Lecture Notes

Professor: Michael Hitrik Scribe: Daniel Raban

Contents

1	Har	rmonic Functions	5
	1.1	Relationship to holomorphic functions	5
	1.2	The Poisson formula and Poisson kernel	5
	1.3	The Dirichlet problem in the disc	7
2	Me	an Value Property and Maximum Principles of Harmonic Functions	8
	2.1	Solving the Dirichlet problem	8
	2.2	Mean value property	9
	2.3	Maximum principles of harmonic functions	9
3	Loc	al Uniform Convergence, Upper Semicontinuity, and Subharmonic	
	Fun	nctions	11
	3.1	Local uniform convergence of harmonic functions	11
	3.2	Upper semicontinuous functions	11
	3.3	Subharmonic functions	12
4	Pro	perties of Subharmonic Functions	14
	4.1	Local conditions equivalent to subharmonicity	14
	4.2	Mean value property and maximum principle	15
	4.3	Relationship to holomorphic functions	16
5	Mo	re Properties of Subharmonic Functions	17
	5.1	Uniqueness of subharmonic functions	577 88 99 91 11 11 12 14 14 15 16 177 17 18 20 20 21
	5.2	Local integrability of subharmonic functions	17
	5.3	Differential characterization of subharmonic functions	18
6	Sub	pharmonicity and Convexity	20
6	6.1	Jensen's inequality and composition of convex functions with subharmonic	
		functions	20
	6.2	Maximality bounds in an annulus	21

Averages of Subharmonic Functions 2				
7.1 Convexity of averages of subharmonic functions	23			
7.2 The Phragmén-Lindelöf principle	25			
The Phragmén-Lindelöf Principle	26			
8.1 The Phragmén-Lindelöf Principle for subharmonic functions	26			
8.2 Phragmén-Lindelöf for a sector	27			
8.3 Phragmén-Lindelöf for general domains	27			
Phragmén-Lindelöf for Strips and Cauchy's Integral Formula for Non-				
Holomorphic Functions	28			
9.1 Phragmén-Lindelöf for a half-strip and a strip	28			
9.2 Cauchy's integral formula for non-holomorphic functions	29			
Relationships Between Compactly Supported and Holomoprhic Func-				
tions	30			
10.1 Solving the inhomogeneous Cauchy-Riemann equation	30			
10.2 Bounds on derivatives of holomorphic functions	30			
Runge's Theorem and Compact Exhaustion	32			
11.1 Runge's theorem	32			
11.2 Compact exhaustion	33			
Applications of Runge's Theorem	34			
12.1 Locally uniform approximation of holomorphic functions	34			
12.2 Solving the inhomogeneous Cauchy-Riemann equation	34			
Mittag-Leffler's Theorem and Infinite Products of Holomorphic Func-				
	36			
13.1 Mittag-Lemer's theorem	30			
13.2 Infinite products of holomorphic functions	37			
Weierstrass's Theorem	38			
14.1 Constructing holomorphic functions with a given zero set	38			
14.2 Characterization of meromorphic functions	39			
Corollaries of Weierstrass's Theorem and Entire Functions of Finite Or-				
der	40			
15.1 Existence of a holomorphic function with given Taylor expansion near in-	40			
15.2 Existence of a holomorphic function which cannot be extended	40 40			
15.3 Entire functions of finite order	41			
	Averages of Subharmonic Functions 7.1 Convexity of averages of subharmonic functions 7.2 The Phragmén-Lindelöf principle 8.1 The Phragmén-Lindelöf Principle for subharmonic functions 8.1 The Phragmén-Lindelöf for a sector 8.2 Phragmén-Lindelöf for strips and Cauchy's Integral Formula for Non-Holomorphic Functions 9.1 Phragmén-Lindelöf for a half-strip and a strip 9.2 Cauchy's integral formula for non-holomorphic functions 9.1 Phragmén-Lindelöf for a half-strip and a strip 9.2 Cauchy's integral formula for non-holomorphic functions 9.2 Cauchy's integral formula for non-holomorphic functions 10.1 Solving the inhomogeneous Cauchy-Riemann equation 10.2 Bounds on derivatives of holomorphic functions 11.1 Runge's Theorem and Compact Exhaustion 11.2 Compact exhaustion 11.2 Compact exhaustion 12.3 Solving the inhomogeneous Cauchy-Riemann equation 12.4 Locally uniform approximation of holomorphic functions 12.5 Solving the inhomogeneous Cauchy-Riemann equation 13.1 Mittag-Leffler's Theorem and Infinite Products of Holomorphic Functions 13.1			

16 Jensen's Formula	42
16.1 Example of entire functions of finite order	42
16.2 Jensen's formula	42
16.3 Number of zeros in a disc	43
17 Factorization of Entire Functions of Finite Order	45
17.1 Number of zeros of entire functions of finite order	45
17.2 Weierstrass factors and Weierstrass' theorem for \mathbb{C}	45
17.3 Factorization of entire functions of finite order	46
18 Hadamard Factorization	48
18.1 Lower bound on the product of Weierstrass factors $\ldots \ldots \ldots \ldots \ldots$	48
18.2 Proof of Hadamard's theorem	50
19 Applications of Hadamard Factorization and Properties of the Γ -Function	51
19.1 Minimum modulus theorem and range of entire functions of finite order \ldots	51
19.2 Factorization of sine	51
19.3 The Γ -function	52
20 Uniqueness of the Γ -Function and Hadamard Factorization of $1/\Gamma$	54
20.1 Uniqueness of the Γ -function $\ldots \ldots \ldots$	54
20.2 Hadamard factorization of $1/\Gamma$	54
21 Bloch's Theorem and Range of Meromorphic Functions	58
21.1 Bloch's theorem	58
21.2 Range of meromorphic functions	59
22 Picard's Little Theorem and Schottky's Theorem	61
22.1 Picard's little theorem	61
22.2 Schottky's theorem	62
23 The Montel-Caratheodory Theorem and Corollaries of Picard's Great	
Theorem	63
23.1 Proof of Schottky's theorem, continued	63
23.2 The Montel-Caratheodory theorem	63
23.3 Corollaries of Picard's great theorem	64
24 Picard's Great Theorem and Fatou's Theorem	65
24.1 Picard's Great Theorem	65
24.2 Boundary values of harmonic functions in the disc	65

25	Fatou's Theorem and the Riesz-Herglotz Theorem	67
	25.1 Fatou's theorem, continued	67
	25.2 Representing harmonic functions by measures	68
26	Harmonic measures	70
	26.1 The Riesz-Herglotz theorem	70
	26.2 Boundary behavior of harmonic measures	72
27	Radial Limits of Harmonic Functions on the Disc	73
	27.1 Radial limits of harmonic functions on the disc	73
	27.2 The Riesz-Riesz theorem	75

1 Harmonic Functions

1.1 Relationship to holomorphic functions

We will denote the complex plane as both \mathbb{R}^2 with coordinates x_1, x_2 and as \mathbb{C} with complex coordinate $z = x_1 + ix_2$.

Definition 1.1. Let $\Omega \subseteq \mathbb{C}$ be open. We say that $u \in C^2(\Omega)$ is harmonic if $\Delta u = 0$ in Ω . Here, $\Omega = \partial_{x_1}^2 + \partial_{x_2}^2 = 4\partial_z \partial_{\overline{z}}$, where

$$\partial_z = \frac{1}{2}(\partial_{x_1} - i\partial_{x_2}), \qquad \partial_{\overline{z}} = \frac{1}{2}(\partial_{x_1} + i\partial_{x_2}).$$

Proposition 1.1. Let $\Omega \subseteq \mathbb{R}^2$ be simply connected, and let u be real and harmonic. Then $u = \operatorname{Re}(f)$, where $f \in \operatorname{Hol}(\Omega)$, the set of functions $f : \Omega \to \mathbb{C}$ that are holomorphic.

Proof. Observe that $2\partial_z u$ is holomorphic. So there exists a $g \in \operatorname{Hol}(\Omega)$ such that $g' = \partial_z g = 2\partial_z u$. Then $\partial_z (g + \overline{g}) = 2\partial_z u$. Then $\partial_z (2\operatorname{Re}(g)) = 2\partial_z (2u)$, so $2\operatorname{Re}(g) = 2u + c$ with $c \in \mathbb{R}$. So $u = \operatorname{Re}(g - c)$.

Remark 1.1. It follows that $u \in C^{\infty}(\Omega)$ and even real analytic. That is, for any $a \in \Omega$, we have in a neighborhood of a that

$$u(x) = \sum_{j,k=0}^{\infty} c_{j,k} (x_1 - a_1)^j (x_2 - a_2)^k.$$

This is an absolutely convergent power series.

1.2 The Poisson formula and Poisson kernel

Theorem 1.1. Let $\Omega \subseteq \mathbb{R}^2$ be open with u harmonic in Ω . If the disc $\{x : |x-a| \leq R\} \subseteq \Omega$, then we have the Poisson formula:

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x-a,y)u(a+y) \, ds(y), \qquad |x-a| < R.$$

Here, ds(y) is the arc length element along |y| = R, and

$$P_R(x,y) = rac{R^2 - |x|^2}{|x - y|^2}, \qquad |x| < R, |y| = R.$$

Proof. We may assume a = 0. Now u is harmonic in $\{|x| < R_1\}$ for some $R_1 > R$. So u = Re(f), where f is holomorphic in |z| < R. Let |z| < R, |w| = R, and compute:

$$P_R(z,w) = \operatorname{Re}\left(\frac{w+z}{w-z}\right) = \frac{1}{2}\left(\frac{w+z}{w-z} + \frac{\overline{w+z}}{\overline{w}-\overline{z}}\right) = \frac{1}{2}\left(\frac{w+z}{w-z} + \frac{R^2 + w\overline{z}}{R^2 - w\overline{z}}\right)$$

Set

$$\varphi_z(w) = \frac{1}{2} \left(\frac{w+z}{w-z} + \frac{R^2 + w\overline{z}}{R^2 - w\overline{z}} \right).$$

If 0 < |z| < R, then $\varphi_z(0) = 0$. Consider the function $\psi_z(w)$ sending $w \mapsto \varphi_z(w) f(w)/w$ for |z| < R.

- 1. If 0 < |z| < R, then the singularity at w = 0 is removable and the only other singularity in the disc $|w| \le R$ occurs when w = z. It is a simple pole with the residue equals f(z)/z(1/2)2z = f(z).
- 2. If z = 0, $\psi_z(w) = f(w)/w$ has a simple pole at 0, and the residue equals f(0).

For |z| < R and $w = Re^{i\varphi}$, we get $ds(w) = |dw| = R\frac{dw}{iw}$. So we may write

$$\frac{1}{2\pi i} \int_{|w|=R} P_R(z,w) f(w) \, ds(w) = \frac{1}{2\pi i} \int_{|w|=R} \underbrace{P_R(z,w) \frac{f(w)}{w}}_{\psi_z(w)} \, dw = f(z)$$

by the residue theorem. Taking the real part, we get the result.

Remark 1.2. We can write the Poisson formula as follows:

$$u(re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{|Re^{i\tau} - re^{it}|^2} u(Re^{i\tau} d\tau) = \frac{1}{2\pi} \int_0^{2\pi} \tilde{P}_{R,r}(t-\tau) u(Re^{i\tau}) d\tau,$$

where

$$\tilde{P}_{R,r}(t) = \frac{R^2 - r^2}{R^2 - 2Rr\cos(t) + r^2}$$

This is a convolution with the kernel $P_{R,r}(t)$. This function tends as 1/(R-r).

Proposition 1.2. The Poisson kernel $P_R(x, y)$ has the following properties:

- 1. $P_R(x, y) \ge 0$.
- 2. $x \mapsto P_R(x, y)$ is harmonic for |x| < R, |y| = R.
- 3. For |x| < R,

$$\frac{1}{2\pi R}\int_{|y|=R}P_R(x,y)\,ds(y)=1.$$

4. For all $\varepsilon > 0$ and $\delta > 0$, there exists $R_1 < R$ such that if $|x-y| \ge \delta$ and $R_1 < |x| < R$, then $P_R(x, y) \le \varepsilon$.

Proof. For the second property, observe that we expressed the Poisson kernel as the real part of a holomorphic function. For the third, apply the Poisson formula to the harmonic function 1. \Box

1.3 The Dirichlet problem in the disc

Using the Poisson kernel, we can solve the Dirichlet problem in the disc.

Theorem 1.2. Let $f \in C(\{x : |x| = R\}; \mathbb{R})$. Then there exists a unique $u \in C(\{|x| \le \mathbb{R}\})$ such that u = f on |x| = R and u is harmonic in |x| < R. The function u is given by

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x,y) f(y) \, ds(y), |x| < R.$$

Proof. Uniqueness: If u solves the problem, consider $u_{\rho}(x) = u(\rho(x) \text{ for } 0 < \rho < 1$. The scaled function u_{ρ} is harmonic near $\{|x| \leq R\}$, so

$$u_{\rho} = \frac{1}{2\pi R} \int_{|y|=R} P_R(x,y) u_{\rho}(y) \, ds(y)$$

for |x| < R. Keep x fixed and let $\rho \to 1$. We get that

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) f(y) \, ds(y).$$

For existence, define

$$u(x) = \begin{cases} \frac{1}{2\pi R} \int_{|y|=R} P_R(x,y) f(y) \, ds(y) & |x| < R\\ f & x \in \partial D_R. \end{cases}$$

We will give more detail for this part of the proof next time.

Remark 1.3. We can replace this continuous function f by many things, such as a measure.

2 Mean Value Property and Maximum Principles of Harmonic Functions

2.1 Solving the Dirichlet problem

Last time, given $f \in C(|x| = R)$, we wanted to find a $u \in C^2(|x| < R) \cap C(|x| \le R)$ such that $\delta = 0$ in |x| < R and u = f on |x| = R. We defined

$$u(x) = \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) f(y) \, ds(y), \qquad |x| < R.$$

Then u is harmonic in the disc |x| < R, and we need to show that $u \in C(||x| \le R)$. Let's finish this proof.

Proof. When $0 < \rho < 1$, we let $u_{\rho} = u(\rho x)$ and show that $u_{\rho} \to f$ uniformly on |x| = Ras $\rho \to 1$. Given $\varepsilon > 0$, let $\delta > 0$ be such that if $|y| = |\tilde{y}| = R$ and $|y - \tilde{y}| \le \delta$, then $|f(y) - f(\tilde{y})| \le \varepsilon$. Let $\rho_1 < 1$ be such that if |x| = R, |y| = R, and $|x - y| \ge \delta$, then $\rho_1 < \rho < 1 \implies P_R(\rho x, y) \le \varepsilon$. We get

$$u_{\rho}(x) - f(x) = \frac{1}{2\pi R} \int_{|y|=R} P_{R}(\rho x, y)(f(y) - f(x)) \, ds(y)$$

= $\frac{1}{2\pi R} \left(\int_{\substack{|y|=R\\|y-x|\leq\delta}} + \int_{\substack{|y|=R\\|y-x|\geq\delta}} \right)$
= $I_{1} + I_{2}.$

Note that $|I_1| \leq \varepsilon$. When $\rho_1 < \rho < 1$ we get

$$|I_2| \le \frac{1}{2\pi R} \int_{\substack{|y|=R\\|y-x|\ge\delta}} P_R(\rho x, y) |f(y) - f(x)| \, ds(y) \le 2M\varepsilon,$$

where $M = \max_{|y|=R} |f(y)|$. We get that

$$|u_{\rho}(x) - f(x)| \le (1+2M)\varepsilon$$

for $\rho_1 < \rho < 1$ and |x| = R. Next, if |x| < R,

$$|u_{\rho}(x) - u(x)| = \left| \frac{1}{2\pi R} \int_{|y|=R} P_R(x, y) (u_{\rho}(y) - f(y)) \, ds(y) \right| \le \max_{|y|=R} |u_{\rho} - f| \xrightarrow{\rho \to 1} 0.$$

We get that $u_{\rho} \to u$ uniformly on $|x| \leq R$, as $\rho \to 1$. The u_{ρ} are continuous on $|x| \leq R$, so $u \in C(|x| \leq R)$.

2.2 Mean value property

Harmonic functions enjoy the following unique continuation principle:

Proposition 2.1. If $\Omega \subseteq \mathbb{R}^2$ is a domain, $u \in H(\Omega) = \{\text{harmonic functions on } \Omega\}$, and $u|_{\omega} = 0$ for nonempty open $\omega \subseteq \Omega$, then u vanishes identically.

Proposition 2.2 (Mean value property of harmonic functions). Let $\Omega \subseteq \mathbb{R}^2$ be open, $u \in H(\Omega)$, and $\{|x-a| \leq R\} \subseteq \Omega$. Then

$$u(a) = \frac{1}{2\pi R} \int_{|y|=R} u(a+y) \, ds(y).$$

Proof. Take x = a in the Poisson formula.

2.3 Maximum principles of harmonic functions

Theorem 2.1 (maximum principle). Let $\emptyset \neq \Omega \subseteq \mathbb{R}^2$ be open and bounded with $u \in H(\Omega) \cap C(\overline{\Omega})$. Then for every $x \in \overline{\Omega}$,

$$\min_{\partial\Omega} u \le u(x) \le \max_{\partial\Omega} u$$

Proof. It suffices to show the result for the maximum; then replace u by -u. Let $M = \max_{\overline{\Omega}} u$, and consider the compact set $E = \{x \in \overline{\Omega} : u(x) = M\}$. We have to show that $E \cap \partial \Omega \neq \emptyset$. If $E \cap \partial \Omega = \emptyset$, take $a \in E$ at the smallest positive distance to $\partial \Omega$; this distance exists because E and $\partial \Omega$ are disjoint compact sets. Take R > 0 such that $\{|x-a| \leq R\} \subseteq \Omega$. Then u < M on an open arc contained in $\{|x-a| = R\}$. On the other hand, by the mean value property,

$$M = u(a) = \frac{1}{2\pi R} \int_{|y|=R} u(a+y) \, ds(y) < \frac{1}{2\pi R} \int_{|y|=R} M \, ds(y) = M.$$

This is a contradiction.

There exists a local version of the maximum principle:

Theorem 2.2. If $u \in H(\Omega)$, where $\Omega \subseteq \mathbb{R}^2$, and u has a local maximum at $a \in \Omega$, then u is constant in the component of a.

Theorem 2.3 (Hopf's maximum principle). Let $D = \{|x| < 1\}$ and let $u \in H(D) \cap C(\overline{D})$. Let $x \in \partial D$ be such that $u(x) = \max_{\overline{D}} u$. Then the normal derivative of u at x

$$N_x = \lim_{t \to 0^-} \frac{u(x+tx) - u(x)}{t} = \lim_{t \to 1^-} \frac{u(tx) - u(x)}{t-1}$$

exists (in the sense that $N_x \in [0, \infty]$), and

$$0 \le u(x) - u(z) \le 2\frac{1 + |z|}{1 - |z|} N_x$$

for |z| < 1.

Proof. For 0 < t < 1, write

$$u(tx) = \frac{1}{2\pi} \int_{|y|=1} P(tx, y) u(y) \, ds(y).$$

 So

$$u(tx) - u(x) = \frac{1}{2\pi} \int_{|y|=1} P(tx, y)(u(y) - u(x)) \, ds(y)$$

= $\frac{1}{2\pi} \int_{|y|=1} \frac{1 - t^2}{|tx - y|^2} (u(y) - u(x)) \, ds(y).$

Then the difference quotient is

$$\frac{u(tx) - u(x)}{t - 1} = \frac{t + 1}{2\pi} \int_{|y| = 1} \frac{u(x) - u(y)}{|tx - y|^2} \, ds(y).$$

Let $t \to 1$. The first case is when $\liminf_{t\to 1^-} \frac{u(tx)-u(x)}{t-1} < \infty$. By Fatou's lemma,

$$\frac{t+a}{2\pi} \int \liminf_{t \to 1^-} \frac{u(x) - u(y)}{|tx - y|^2} \, ds < \infty.$$

It follows that $y \mapsto u(x) - u(y)/|x - y|^2 \in L^1(\partial D)$. Try to apply dominated convergence to the above:

$$|x - y| \le |tx - y| + |(1 - t)x| = |tx - y| + 1 - t \le 2|tx - y|.$$

We get that

$$\frac{u(x) - u(y)}{|tx - y|^2} \le 4\frac{u(x) - u(y)}{|x - y|} \in L^1(y),$$

and by dominated convergence, we get

$$\frac{u(tx) - u(x)}{t - 1} \to \frac{1}{\pi} \int_{|y| = 1} \frac{u(x) - u(y)}{|x - y|^2} \, ds(y) < \infty.$$

Case 2 is when $\liminf_{t\to 1^-} \frac{u(tx)-u(x)}{t-1} = \infty$. In this case, $N_x = \infty$. We see also that $N_x > 0$ unless u is constant.

Remark 2.1. It follows that $N_x > 0$ unless u is constant.

3 Local Uniform Convergence, Upper Semicontinuity, and Subharmonic Functions

3.1 Local uniform convergence of harmonic functions

Theorem 3.1. Let $\Omega \subseteq \mathbb{R}^2$ be open, and let $u \in C(\Omega)$ be such that for all $a \in \Omega$, there exists $R_n \to 0$ such that

$$u(a) = \frac{1}{2\pi R_n} \int_{|y|=R_n} u(a+y) \, ds(y)$$

for all n. Then $u \in H(\Omega)$.

Corollary 3.1. Let $u_j \in H(\Omega)$ be a sequence such that $u_k \to u$ locally uniformly in Ω . Then $u \in H(\Omega)$, and for every $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$, we have $\partial^{\alpha} u_k \to \partial^{\alpha} u$ locally uniformly in Ω . Here, $\partial^{\alpha} = \partial^{\alpha_1}_{x_1} \partial^{\alpha_2}_{x_2}$.

Proof. By the theorem, u has the mean value property, so $u \in H(\Omega)$. If $\{|x-a| \leq R\} \subseteq \Omega$, write (for $|x-a| \leq R/2$)

$$\partial^{\alpha} u_{k}(x) - \partial^{\alpha} u(x) = \frac{1}{2\pi R} \partial_{x}^{\alpha} \int_{|y|=R} P_{R}(x-a,y) (u_{k}(a+y) - u(a+y)) \, ds(y)$$

= $\frac{1}{2\pi R} \int_{|y|=R} \partial_{x}^{\alpha} P_{R}(x-a,y) (u_{k}(a+y) - u(a+y)) \, ds(y).$

Here, $|\partial_x^{\alpha} P_R(x-a,y)| \leq C_{\alpha,R}$ for any |y| = R and $|x-a| \leq R/2$. Therefore,

$$|\partial^{\alpha} u_k - \partial^{\alpha} u| \le C_{\alpha,R} \max_{|y|=R} |u(a+y) - u_j(a+y)| \to 0.$$

Covering a compact set $K \subseteq \Omega$ by finitely many open discs of this form $|x - a| \leq R/2$ for R = R(a) > 0, we get that $\partial^{\alpha} u_k \to \partial^{\alpha} u$ uniformly on K.

3.2 Upper semicontinuous functions

Definition 3.1. Let X be a metric space. A function $u : X \to [-\infty, \infty)$ is called **upper semicontinuous** if for every $a \in \mathbb{R}$, the set $\{x \in X : u(x) < a\}$ is open.

Proposition 3.1. A function $u: X \to [-\infty, \infty)$ is upper semicontinuous if and only if $\limsup_{y\to x} u(y) \le u(x)$ for all $x \in X$.

Example 3.1. Let $F \subseteq X$ is closed. Then $\mathbb{1}_F$ is upper semicontinuous.

Proposition 3.2. If u is upper semicontinuous, and $K \subseteq X$ is compact, then u is bounded above, and $\sup_{K} u$ is achieved.

Proposition 3.3. Let $u : X \to [-\infty, \infty)$ be upper semicontinuous and bounded above. Then there exists a sequence $u_j \in C(X)$ such that $u_1 \ge u_2 \ge \cdots \ge u$ and $u_j \to u$ pointwise.

Example 3.2. Let $\Omega \subseteq \mathbb{C}$ be open, and let $f \in \text{Hol}(\Omega)$. Then $u = \log |f|$ (with $\log(0) = -\infty$) is upper semicontinuous.

3.3 Subharmonic functions

Definition 3.2. Let $\Omega \subseteq \mathbb{R}^2$ be open. We say that a function $u : \Omega \to [-\infty, \infty)$ is subharmonic if

- 1. u is upper semicontinuous.
- 2. If $K \subseteq \Omega$ is compact and $h \in C(K) \cap H(K^o)$ is such that $u \leq h$ on ∂K , then $u \leq h$ on K.

Example 3.3. If u is harmonic, then by the mean value property, u is subharmonic.

Proposition 3.4. Let $(u_{\alpha})_{\alpha \in A}$ be a family of subharmonic functions on Ω such that $u = \sup_{\alpha} u_{\alpha} < \infty$ pointwise and u is upper semicontinuous. Then u is subharmonic. If (u_j) is a decreasing sequence of subharmonic functions, then $u = \lim u_j$ is subharmonic.

Proof. The first statement is immediate from the definition. For the second statement, first note that that $u = \lim u_j = \inf u_j$ is upper semicontinuous (if u_α is upper semicontinuous for each α , then $\inf_{\alpha} u_\alpha$ is, as well).

Now let $K \subseteq \Omega$ be compact, let $h \in C(K) \cap H(K^o)$, and let $u \leq h$ on ∂K . Let $\varepsilon > 0$, and let $x_0 \in \partial K$. Then there exists a j such that $u_j(x_0) < u(x_0) + \varepsilon \leq h(x_0) + \varepsilon$. Then $(u_j - h)(x_0)$, where $u_j - h$ is upper semicontinuous on K. So there is a neighborhood V_{x_0} of x_0 such that $u_j(x) - h(x) < \varepsilon$ for all $x \in V_{x_0} \cap \partial K$. Then, for all $k \geq j$, $u_k(x) - h(x) < \varepsilon$ for all $x \in V_{x_0} \cap \partial K$. Covering the compact set ∂K by finitely many open sets of the form V_{x_0} , we get $u_j \leq h + \varepsilon$ on ∂K for all large j. By the subharmonicity of the u_j , we get that $u_j \leq h + \varepsilon$ on K, so $u \leq h$ on K.

Remark 3.1. This is the same argument as in the standard proof of Dini's theorem in elementary analysis.

Theorem 3.2. Let $u : \Omega \to [-\infty, \infty)$ be upper semicontinuous. The following are equivalent:

- 1. u is subharmonic
- 2. (local sub-mean value inequality): For every $a \in \Omega$,

$$u(a) \le \frac{1}{2\pi R} \int_{|y|=R} u(a+y) \, ds(y)$$

for all small R > 0.

3. For every $a \in \Omega$,

$$u(a) \leq \frac{1}{\pi R^2} \iint_{|y| \leq R} u(a+y) \, dy$$

for all small R > 0, where dy is Lebesgue measure in \mathbb{R}^2 .

We will prove these, along with more equivalences, next time.

4 Properties of Subharmonic Functions

4.1 Local conditions equivalent to subharmonicity

Last time, we introduced the notion of a subharmonic function.

Theorem 4.1. Let $u : \Omega \to [-\infty, \infty)$ be upper semicontinuous. The following are equivalent:

- 1. u is subharmonic.
- 2. If $\{|x-a| \leq R\} \subseteq \Omega$, then

$$u(a) \le \frac{1}{2\pi R} \int_{|y|=R} P_R(x-a,y)u(a+y) \, ds(y).$$

3. (local sub-mean value inequality): For every $a \in \Omega$,

$$u(a) \le \frac{1}{2\pi R} \int_{|y|=R} u(a+y) \, ds(y)$$

for all small R > 0.

4. For every $a \in \Omega$,

$$u(a) \le \frac{1}{\pi R^2} \iint_{|y| \le R} u(a+y) \, dy$$

for all small R > 0, where dy is Lebesgue measure in \mathbb{R}^2 .

5. If $\{|x-a| \leq R\} \subseteq \Omega$, then

$$u(a) \le \frac{1}{\pi R^2} \iint_{|y| \le R} u(a+y) \, dy$$

Remark 4.1. It follows from properties 3 and 4 that subharmonicity is a local property.

Remark 4.2. The integrals in the theorem are Lebesgue integrals of upper semicontinuous functions. If $u: \Omega \to [-\infty, \infty)$ is upper semicontinuous and $K \subseteq \Omega$ is compact, then

$$\int_{K} u(x) \, dx = \inf_{\substack{u \leq \varphi \\ \varphi \in C(K)}} \int \varphi \, dx \in [-\infty, \infty).$$

Proof. (1) \implies (2): Let $f \in C(|x-a| = R)$, and let $v \in C(|x-a| \le R)$ be harmonic in |x-a| < R so that v = f along |x-a| = R. If $u \le f$ on |x-a| = R, then $u \le v$ in $|x-a| \le R$. So

$$u(x) \le \frac{1}{2\pi R} \int_{|y|=R} P_R(x-a,y) f(a+y) \, ds(y)$$

for |x-a| < R. Pick a sequence $f_k \in C(|x-a| = R)$ such that $f_k \downarrow u$. apply this inequality to every function in the sequence, and let $k \to \infty$ by monotone convergence to get the desired inequality.

(2) \implies (3): Take x = a.

(2) \implies (5): If $\{|x-a| \le R\}$, then

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt$$

with $0 < r \leq R$. Multiply by 2r and integrate over [0, R]. This gives us the area integral, expressed in polar coordinates.

(5) \implies (4): This is a special case.

(3) \implies (1): Let $K \subseteq \Omega$ be compact and $h \in C(K) \cap H(K^o)$ such that $u \leq h$ on ∂K . We want to show that $u \leq h$ on K. The function u - h is upper semicontinuous on K and satisfies the local sub-mean value inequality in K. We can prove the maximum principle for u - h on K with the same proof as for harmonic functions: If $M = \max_K (u - h)$, then the set $\{x \in K : u(x) - h(x) = M\}$ is closed (as u - h is upper semicontinuous on K). We get that $\max_K u - h = \max_{\partial K} \leq 0$. So $u \leq h$ on K.

(4) \implies (1): The argument is similar to the proof of (3) \implies (1), using the local sub-mean value inequality with respect to small discs rather than circles.

4.2 Mean value property and maximum principle

In the proof of the theorem, we also proved the following property.

Theorem 4.2 (mean value property for subharmonic functions). Let $\Omega \subseteq \mathbb{R}^2$ be open and bounded, and let u be upper semicontinuous on $\overline{\Omega}$ and subharmonic in Ω . Then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

We also have the following version of the maximum principle.

Theorem 4.3 (maximum principle for subharmonic functions). Let $\Omega \subseteq \mathbb{R}^2$ be open and connected, and let u be subharmonic Ω . If u contains a global maximum on Ω , then it is constant.

Proof. Let $M = \max_{\Omega} u$, and notice that the sets $\{u < M\}, \{u = M\}$ are open.

It is important to note that the maximum needs to be global. In this sense, subharmonic functions are much less rigid than their harmonic counterparts.

Example 4.1. Here is an example where u attains a local maximum without being constant in Ω . Take $u(z) = \max(0, \operatorname{Re}(z))$.

4.3 Relationship to holomorphic functions

Proposition 4.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let $f \in Hol(\Omega)$. Then $u = \log |f| : \Omega \to [-\infty, \infty)$ is subharmonic in Ω .

Proof. We saw before that u is upper semicontinuous, and we shall check that for all $a \in \Omega$,

$$u(a) \le \frac{1}{2\pi R} \int_{|y|=R} u(a+y) \, ds(y)$$

for all small R > 0. If f(a) = 0, then the inequality holds. If $f \neq 0$, then in a small simply connected neighborhood of a, we can write $u = \operatorname{Re}(\log(f))$. Then u is harmonic near a and the inequality holds with an equality for all R > 0.

Next time, we will prove the following result.

Proposition 4.2. Let $f \in C(|z| \leq R) \cap \text{Hol}(|z| < R)$. Assume that there exists a Lebesgue measurable $E \subseteq \{|z| = R\}$ of positive measure such that $f|_E = 0$. Then $f \equiv 0$ in |z| < R.

5 More Properties of Subharmonic Functions

5.1 Uniqueness of subharmonic functions

Definition 5.1. Denote $SH(\Omega)$ to be the set of all subharmonic functions in Ω .

Last time, we showed that if $u \in SH(\Omega)$ and if $\{|x - a| \leq R\} \subseteq \Omega$, then

$$u(x) \le \frac{1}{2\pi R} \int_{|y|=R} P_R(x-a,y)u(a-y)\,ds(y), \qquad |x-a| < R.$$

Now assume that u is upper semicontinuous in $\{|x-a| \leq R\}$ and subharmonic in $\{|x-a| < R\}.$ Then

$$u(x) \le \frac{1}{2\pi r} \int_{|y|=r} P_r(x-a,y)u(a+y)\,ds(y), \qquad |x-a| < R.$$

To let $r \to R$, we can assume that $u \leq 0$ and apply Fatou's lemma. So

$$\begin{split} u(x) &\leq \limsup_{r \to R} \frac{1}{2\pi r} \int_{|y|=r} P_r(x-a,y) u(a+y) \, ds(y) \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} \limsup_{r \to R} \frac{r^2 - |x-a|^2}{|re^{it} - (x-a)|^2} u(a+re^{it}) \, dt \\ &\leq \frac{1}{2\pi R} \int_{|y|=R} P_R(x-a,y) u(a+y) \, ds(y). \end{split}$$

Proposition 5.1. Let $f \in C(|z| \leq R) \cap \text{Hol}(|z| < R)$. Assume that there exists a Lebesgue measurable $E \subseteq \{|z| = R\}$ of positive measure such that $f|_E = 0$. Then $f \equiv 0$ in |z| < R.

Proof. We may assume that $|f| \leq 1$. The function $u = \log |f|$ is upper semicontinuous on |z| = R, subharmonic in |z| < R, so by our previous discussion,

$$\log|f(z)| \le \frac{1}{2\pi R} \int_{|w|=R} \frac{R^2 - |z|^2}{|z - w|^2} \log|f(w)| \, |dw|, \qquad |z| < R$$

The integrand equals $-\infty$ on E with m(E) > 0, so $f \equiv 0$.

5.2 Local integrability of subharmonic functions

Theorem 5.1. Let $\Omega \subseteq \mathbb{R}^2$ be open and connected, and let $u \in SH(\Omega)$ with $u \not\equiv -\infty$. Then $u \in L^1_{loc}(\Omega)$; that is, if $K \subseteq \Omega$ is compact, then $\int_K u(x) dx > -\infty$. Furthermore, if $\{|x-a| \leq R\} \subseteq \Omega$, then $\int_{|x-a|=R} u(x) ds(x) > -\infty$.

Remark 5.1. The set $\{x \in \Omega : u(x) = -\infty\}$ is a Lebesgue-null set.

Proof. Let E be the set of points $x \in \Omega$ having a neighborhood ω such that $\overline{\omega} \subseteq \Omega$ and $\int_{\omega} u(x) dx > -\infty$. $E \neq \emptyset$ because there exists some $a \in \Omega$ with $u(a) > -\infty$, and the sub-mean value inequality gives

$$u(a) \leq \frac{1}{\pi R^2} \iint_{|x-a| < R} U(x) \, dx$$

for all small R > 0. E is also open.

Let us show that $\Omega \setminus E$ is open. If $\Omega \setminus E$ is not open, then there exists $a \in \Omega \setminus E$ and a sequence $a_n \in E$ such that $a_n \to a$. Arbitrarily close to a_n , there exists b_n such that $u(b_n) > \infty$. Picking b_n so that $|a_n - b_n| \to 0$, we get $b_n \to a$ and $u(b_n) > -\infty$ for all n. Take R > 0 such that $\{|x - a| < R \subseteq \Omega\}$. Then if $K_n = \{|x - b_n| \leq R/2\}$, we have $K_n \subseteq \Omega$ for large n. So

$$\frac{1}{\pi (R/2)^2} \iint_{K_n} u(x) \, dx \ge u(b_n) > -\infty.$$

For large $n, a \in K_n^o$. So $a \in E$, which contradicts the choice of a. Because Ω is connected, it follows that $\Omega = E$, and therefore $u \in L^1_{loc}(\Omega)$.

If $\{|x-a| \leq R\} \subseteq \Omega$, write

$$u(x) \le \frac{1}{2\pi R} \int_{|y|=R} P_r(x-a,y)u(a+y)\,ds(y), \qquad |x-a| < R.$$

We may assume that $u \leq 0$, and then

$$P_R(x-a,y) = \frac{R^2 - |x-a|^2}{|y-(x-a)|^2} \ge \frac{R^2 - \rho^2}{(R+\rho)^2} = \frac{R-\rho}{R+\rho}, \qquad \rho = |x-a|,$$

 \mathbf{SO}

$$u(x) \le \frac{1}{2\pi R} \frac{R-\rho}{R+\rho} \int_{|y|=R} u(a+y) \, ds(y).$$

This integral must be finite, for otherwise, $u = \infty$ on |x - a| < R.

5.3 Differential characterization of subharmonic functions

Theorem 5.2. Let $\Omega \subseteq \mathbb{R}^2$ be open, and let $u \in C^2(\Omega, \mathbb{R})$. Then $u \in SH(\Omega)$ if and only if $\Delta u \geq 0$ in Ω .

Proof. (\implies): Taylor expand u at $a \in \Omega$:

$$u(x) = u(a) + u'(a)(x-a) + \frac{1}{2}u''(a)(x-a)(x-a) + o(|x-a|^2),$$

where $u'(a) = (u'_{x_1}(a), u'_{x_2}(a))$ and $u''(a) = (u''_{x_j x_k}(a))_{1 \le j,k \le 2}$. Because *u* is subharmonic, for all small R > 0,

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + Re^{it}) dt.$$

Substituting in the Taylor expansion, the linear terms drop out, and $(x_j - a_j)(x_k - a_k)$ drop out as well, when $j \neq k$. The remaining terms are the diagonal terms, which are exactly given by the Laplacian. So

$$u(a) \le u(a) + \frac{R^2}{4}\Delta u(a) + o(R^2).$$

We get

$$\frac{R^2}{4}\Delta u(a) + o(R^2) \implies \Delta u(a) \ge 0.$$

(\Leftarrow): Assume first that $\Delta u > 0$ in Ω . By the previous computation,

$$\frac{1}{2\pi} \int_0^{2\pi} u(a + Re^{it}) \, dt = u(a) + \frac{R^2}{4} \underbrace{\Delta u(a)}_{>0} + o(R^2) > u(a).$$

for small R > 0. Thus, $\Delta u > 0 \implies u \in SH(\Omega)$. In general, consider $u_{\varepsilon} = u + \varepsilon |x|^2$ for $\varepsilon > 0$. Then $\Delta u_{\varepsilon} \ge 4\varepsilon > 0$, so $u_{\varepsilon} \in SH(\Omega)$. Letting $\varepsilon \downarrow 0$, we get $u = \lim u_{\varepsilon} \in SH(\Omega)$. \Box

6 Subharmonicity and Convexity

6.1 Jensen's inequality and composition of convex functions with subharmonic functions

Last time, we showed that $u \in C^2(\Omega)$ is subharmonic iff $\Delta u \ge 0$ in Ω .

Remark 6.1. Let $u \in SH(\Omega)$ be such that $u \not\equiv$ on any component (so $u \in L^!_{loc}$). Approximating u by a decreasing sequence of smooth, subharmonic functions, one may show that $\int u\Delta\varphi \, dx \geq 0$ for all $0 \leq \varphi \in C^2(\Omega)$ such that $\varphi = 0$ outside a compact subset of Ω .

Theorem 6.1. Let Ω be open, $u \in SH(\Omega)$, and let $\varphi : \mathbb{R} \to \mathbb{R}$ be increasing and convex. Then $\varphi \circ u \in SH(\Omega)$ (we define $\varphi(-\infty) = \lim_{t \to -\infty} \varphi(t)$).

Example 6.1. If $f \in \text{Hol}(\Omega)$, then $|f|^a \in SL(\Omega)$ for any a > 0. Write $u = \log |f|$ and $\varphi(t) = e^{at}$, where a > 0.

To proof this theorem, we need the following general inequality for convex functions.

Proposition 6.1 (Jensen's inequality). Let $I \subseteq \mathbb{R}$ be an open interval, and let $\psi : T \to \mathbb{R}$ be convex. Let (Ω, μ) be a measure space equipped with a probability measure $(\mu(\Omega) = 1)$. Let $f \in L^1(\Omega, I)$. Then

$$\psi\left(\int f\,d\mu\right)\leq\int\psi_0f\,d\mu.$$

Proof. Let I = (a, b), and let $c = \int f d\mu \in (a, b)$. If for $a < t_1 < c < t_2 < b$, $c = \alpha t_1 = (1 - \alpha)t_2$, where $\alpha = (t_2 - c)/(t_2 - t_1)$, then $\psi(c) \leq \alpha \psi(t_1) + (1 - \alpha)\psi(t_2)$. After some algebra, we get

$$\frac{\psi(c) - \psi(t_1)}{c - t_1} \le \frac{\psi(t_2) - \psi(c)}{t_2 - c}.$$

So

$$\underbrace{\sup_{t_1 < c} \frac{\psi(c) - \psi(t_1)}{c - t_1}}_{=\psi'_{\text{left}}(c)} \leq \underbrace{\inf_{t_2 > c} \frac{\psi(t_2) - \psi(c)}{t_2 - c}}_{=\psi'_{\text{right}}(c)},$$

where these are the left and right derivatives of φ at c. Then $\psi(t) \ge \psi(c) + \psi_{\text{right}}(c)(t-c)$ for all $t \in I$. That is the tangent line at c lies below the graph of ψ . It follows that

$$\int \psi(f) \, d\mu \ge \psi \left(\int f \, d\mu \right) + \psi'_{\text{right}}(c) \underbrace{\left(\int f - c \right)}^{0} \Box$$

0

Now let's prove the theorem.

Proof. Let $\{|x-a| \leq R\} \subseteq \Omega$. Then

$$u(a) \le \frac{1}{2iR} \int_{|y|=R} u(a+y) ds(y).$$

Applying Jensen's inequality,

$$\varphi(u(a)) \leq \frac{1}{2\pi i} \int_{|y|=R} \varphi(u(a+y)) \, ds(y).$$

We also check that $\varphi \circ u$ is upper semicontinuous (since φ is continuous). We get that $\varphi \circ u \in SH(\Omega)$.

6.2 Maximality bounds in an annulus

Theorem 6.2. Let u be subharmonic in $0 \leq R_1 < |x| < R_2 \leq \infty$, and let $M(r) = \max_{|x|=r} u(r)$. Then M(r) is a convex function of $\log(r) \in (\log(R_1), \log(R_2))$: if $r_1, r_2 \in (R_1, R_2)$ and $0 \leq \lambda \leq 1$, then

$$M(r_1^{\lambda} r_2^{1-\lambda}) \le \lambda M(r_1) + (1-\lambda)M(r_2).$$

If u is subharmonic in |x| < R, then M(r) is an increasing function of r.

Proof. We claim that if I is an open interval in \mathbb{R} , $f: I \to \mathbb{R}$ is convex if any only if for any compact interval $J \subseteq I$ and any linear function L,

$$\sup_{J}(f-L) = \sup_{\partial J}(f-L).$$

This follows from the fact that the graph of f on J lies beneath the chord connecting the endpoints.

Using this characterization of convexity, we have to show that if $a, b \in \mathbb{R}$ are such that $\tilde{M}(r) = M(r) = a \log(r) - b$ is such that $M(r_j) \leq 0$ for j = 1, 2, then $\tilde{M}(r) \leq 0$ when $r_1 \leq r \leq r_2$. If we set $v(x) = u(x) - a \log |x| - b$, then $v(x) \in SH(R_1 < |x| < R_2)$ since $a \log |x| - b$ is harmonic. Then $\tilde{M}(r) = \max_{|x|=r} v(x)$. If $v(x) \leq 0$ when $|x| = r_1$ and $|x| = r_2$, then $v(x) \leq 0$ for $r_1 \leq |x| \leq r_2$ by the maximum principle. Therefore, $\tilde{M}(r) \leq 0$ for $r_1 \leq r \leq r_2$. This shows that M(r) is convex as a function of $\log(r)$.

If $u \in SH(|x| < R)$, then M(r) increases by the maximum principle applied to u.

Corollary 6.1 (Hadamard's three circle theorem). Let $f \in \text{Hol}(R_1 < |z| < r_2)$, and let $M(r) = \max_{|z|=r} |f(z)|$. Then $\log(M(r))$ is a convex function of $\log(r)$: if $r_1, r_2 \in (R_1, R_2)$ and $0 \le \lambda \le 1$, then

$$M(r_1^{\lambda} r_2^{1-\lambda}) \le M(r_1)^{\lambda} M(r_2)^{1-\lambda}$$

Proof. Apply the theorem to $u = \log |f|$.

Remark 6.2. This inequality is much sharper than what we get from the usual maximum principle applied to $|f|: M(r_1^{\lambda}r_2^{1-\lambda}) \leq \max(M(r_1), M(r_2)).$

Next time, we will prove the following result (and more).

Proposition 6.2. If $u \in SH(|x| < R)$, then the average

$$I(r) := \frac{1}{2\pi r} \int_{|y|=r} u(y) \, ds(y).$$

is a convex function of $\log(r)$ which is increasing.

7 Averages of Subharmonic Functions

7.1 Convexity of averages of subharmonic functions

Last time, we proved the following theorem.

Theorem 7.1. If $u \in SH(R_1 < |x| < R_2$, then $M(r) = \max_{|x|=r} u(x)$ is a convex function of $\log(r)$.

This gave us a stronger form of the maximum principle. Here is a similar theorem.

Theorem 7.2. Let $u \in SH(R_1 < |x| < R_2)$, let $0 \le R_1 < R_2 \le \infty$, and let

$$I(r) = \frac{1}{2\pi r} \int_{|y|=r} u(y) \, ds(y). \qquad R_1 < r < R_2$$

Then I(r) is a convex function of $\log(r)$. If $u \in SH(|X| < R)$, then I(r) is increasing, and $I(r) \xrightarrow{r \to 0^+} u(0)$.

Proof. Write

$$I(r) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{it}) \, dt.$$

Approximating u by a decreasing sequence of continuous functions, we see that I(r) is upper semicontinuous. We claim that I(r) satisfies the maximum principle: If $R_1 < r_1 < r_2 < R_2$, then

$$\max_{[r_1, r_2]} I(r) = \max(I(r_1), I(r_2)).$$

Let $R_1 < r_0 < R_2$, and let $\rho > 0$ be small. Let $|x| = r_0$, and write

$$\begin{split} u(x) &\leq \frac{1}{\pi \rho^2} \iint_{|y| \leq \rho} u(x+y) \, dy \\ &= \frac{1}{\pi \rho^2} \iint u(x+y) \mathbb{1}_{B_0(\rho)}(y) \, dy \\ &= \frac{1}{\pi \rho^2} \iint u(y) \mathbb{1}_{B_0(\rho)}(y-x) \, dy. \end{split}$$

Integrating over $|x| = r_0$, we get

$$I(r) \leq \frac{1}{2\pi r} \frac{1}{\pi \rho^2} \int_{|x|=r_0} \left[\iint u(y) \mathbb{1}_{B_0(\rho)}(y-x) \, dy \right] \, ds(x)$$

= $\frac{1}{2\pi r} \frac{1}{\pi \rho^2} \iint u(y) \left[\int_{|x|=r_0} \mathbb{1}_{B_0(\rho)}(y-x) \, ds(x) \right] \, dy$

$$= \frac{1}{2\pi r} \frac{1}{\pi \rho^2} \iint u(y)\psi(y) \, dy,$$

where

$$\psi(y) = \int_{|x|=r_0} \mathbb{1}_{B_0(\rho)}(y-x) \, ds(x).$$

The function ψ gives us the 1-dimensional Lebesgue measure of the part of the circle $\{|z - x| = r_0\}$ contained in the ball $B(y, \rho)$. We have

- $\bullet \ \psi \geq 0,$
- ψ is continuous,
- $\psi(y) = \varphi(|y|)$ for some function φ .
- $\varphi(r) = 0$ for $|r r_0| \ge \rho$
- $\varphi(r_0) > 0.$

We get

$$I(r) \leq \iint u(y)\varphi(|y|) \, dy = \iint_{\substack{0 \leq t \leq 2\pi \\ |r-r_0| \leq \rho}} u(re^{it})\varphi(r)r \, dr \, dt = \int \tilde{\varphi}(r)I(r) \, dr,$$

where $\tilde{\varphi}(r) = 2\pi r \varphi(r)$. So

$$I(r_0) \le \int \tilde{\varphi}(r) I(r) \, dr.$$

If u is harmonic, then equality holds. In particular, using u = 1, we get

$$\int \tilde{\varphi}(r) \, dr = 1.$$

The sub-mean value inequality

$$I(r_0) \le \int \tilde{\varphi}(r) I(r) \, dt$$

can now be used to prove the maximum principle for I(r) in the usual way. This proves the claim.

To show that I(r) is convex, let $R_1 < r_2 < r_2 < R_2$, and let $(r) = I(r) - a \log(r) - b$ be such that $\tilde{I}(r_j) \leq 0$ for j = 1, 2. We want to show that $\tilde{I}(r) \leq 0$ when $r_1 \leq r \leq r_2$. This follows from the maximum principle applied to the subharmonic function $u(x) = a \log |x| - b$.

Now assume that u subharmonic in |x| < R. We want to show that I(r) is increasing in r. We have $I(r) = f(\log(r))$, where f is convex on $(-\infty, \log(R))$. We want to show that f is increasing, so it suffices to show that the right derivative $f'_{\text{right}} \ge 0$. If $f'_{\text{right}}(t_0) < 0$ for some t_0 , write

$$f(t) \ge f(t_0) + f'_{\text{right}}(t_0)(t - t_0)$$

Letting $t \to -\infty$, we get that $f(t) \to +\infty$. So $I(r) \to +\infty$ as $r \to 0$. This is impossible, as u is locally bounded above.

Finally, we have for all small r > 0,

$$u(0) \le I(r) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{it}) dt.$$

Using the upper semicontinuity of u at 0, we get that $I(r) \xrightarrow{r \to 0^+} u(0)$.

Here is a special case of this theorem, applied to a harmonic function u.

Corollary 7.1. Let u be harmonic in $R_1 < |x| < R_2$. Then

$$I(r) = a\log(r) + b.$$

Proof. The theorem gives us that

$$\pm I(r) = \frac{1}{2\pi r} \int_{|x|=r} u(x) \, ds(x)$$

are convex functions of $\log(r)$. So I(r) is an affine function of $\log(r)$.

7.2 The Phragmén-Lindelöf principle

We would like to extend the maximum principle for subharmonic functions to unbounded domains.

Example 7.1. Let $\Omega = {\text{Im}(z) = x_2 > 0}$, and let $i(x) = x_2$. This is harmonic, unbounded, and $u|_{\partial\Omega} = 0$. The idea is that we should be ok if we demand that the function does not grow too rapidly at ∞ .

We will prove a general theorem which will allow us to do this. The original motivation of Phragmén and Lindelöf was the case of when Ω is a sector of the complex plane.

8 The Phragmén-Lindelöf Principle

8.1 The Phragmén-Lindelöf Principle for subharmonic functions

To prove the Phragmén-Lindelöf¹ principle, let's introduce some notation.

Definition 8.1. Let $\Omega \subseteq \mathbb{R}$ be open and unbounded. We say that $\varphi : \overline{\Omega} \to \mathbb{R}$ is a **Phragmén-Lindelöf function** for Ω if

- 1. $\varphi(x) > 0$ for large |x|.
- 2. If u is upper semicontinuous on $\overline{\Omega}$, subharmonic in Ω , $u \leq M$ on $\partial\Omega$, and $u(x) \leq \varphi(x)$ for large $x \in \overline{\Omega}$, then $u \leq M$ on $\overline{\Omega}$.

Remark 8.1. Let φ be a PL function for Ω . Let $f \in \operatorname{Hol}(\Omega) \cap C(\overline{\Omega})$ be such that $|f| \leq M$ on $\partial\Omega$ and $|f(z)| \leq e^{\varphi(z)}$ for large $z \in \overline{\Omega}$. Then $|f| \leq M$ on $\overline{\Omega}$.

Given Ω , how do we construct PL functions for Ω ?

Theorem 8.1 (Phragmén-Lindelöf principle). Let $\Omega \subseteq \mathbb{R}^2$ be open and unbounded. Let $\psi : \overline{\Omega} \to [0, \infty)$ be such that

1. ψ is lower semicontinuous on Ω ($-\psi$ is upper semicontinuous),

- 2. ψ is super harmonic in Ω ($-\psi$ is subharmonic),
- 3. $\psi(x) \to +\infty$ as $|x| \to \infty$ for $x \in \overline{\Omega}$.

Let $\varphi > 0$ be such that $\varphi(x) = o(\psi(x))$ when $|x| \to \infty$ for $x \in \overline{\Omega}$. Then φ is a PL function for Ω .

Here is the original argument by Phragmén and Lindelöf.

Proof. Let u be upper semicontinuous on $\overline{\Omega}$, subharmonic in Ω , $u \leq M$ on $\partial\Omega$, and $u(x) \leq \varphi(x)$ for large $x \in \overline{\Omega}$. We want to show that $u \leq M$ on $\overline{\Omega}$. For $\varepsilon > 0$, set $u_{\varepsilon} = u - \varepsilon \psi$. Then u_{ε} is upper semicontinuous on $\overline{\Omega}$, subharmonic in Ω , $u_{\varepsilon} \leq M$ on $\partial\Omega$, and for large $x \in \overline{\Omega}$,

$$u_{\varepsilon}(x) \leq \varphi(x) - \varepsilon \psi(x) = -\psi(x) \left(\varepsilon - \frac{\varphi(x)}{\psi(x)}\right) \xrightarrow{|x| \to \infty} -\infty$$

Let $a \in \Omega$, and let R > |a| be such that $u_{\varepsilon}(x) \leq M$ for |x| = R and $x \in \overline{\Omega}$. If $\Omega_R = \{x \in \Omega : |x| < R\}$, then $\partial \Omega \subseteq \partial \Omega \cup \{x \in \overline{\Omega} : |x| = R\}$, and $u_{\varepsilon} \leq M$ on $\partial \Omega_R$. Apply the maximum principle to u_{ε} and the bounded domain Ω_R to get that $u_{\varepsilon} \leq M$ on Ω_R . So

$$u_{\varepsilon}(a) = u(a) - \varepsilon \psi(a) \le M$$

Letting $\varepsilon \to 0^+$, we get that $u \leq M$ on Ω . So φ is a PL function for Ω .

¹Lindelöf was the teacher of Ahlfors.

8.2 Phragmén-Lindelöf for a sector

This important case of the theorem was the original motivation for Phragmén and Lindelöf.

Theorem 8.2 (PL for a sector). Let $\Omega = \{z \in \mathbb{C} \setminus \{0\} : \alpha < \arg(z) < \beta\}$ for $0 < \beta - \alpha < 2\pi$. Then $\varphi(z) = |z|^k$ is a PL function for Ω if $0 < k < \pi/(\beta - \alpha)$.

Proof. We may assume after a rotation that $\Omega = \{z \in \mathbb{C} \setminus \{0\} : |\arg(z)| < \gamma/2\}$, where $0 < \gamma = \beta - \alpha < 2\pi$. Let $k < k_1 < \pi/\gamma$, and consider $\psi(z) = \operatorname{Re}(z^{k_1}) = \operatorname{Re}(e^{k_1 \log(z)})$, using the principal branch of log. This is $\psi(z) = |z|^{k_1} \cos(k_1 \arg(z))$ for $z \in \overline{\Omega}$ with $z \neq 0$. Then ψ is harmonic in Ω , continuous in $\overline{\Omega}$, and $|\psi(z)| \sim |z|^{k_1} \operatorname{since} |k_1 \arg(z)| \le k_1 \gamma/2 < \pi/2$. In particular, $\phi = o(\psi)$ at ∞ . Therefore, φ is a PL function for Ω .

Corollary 8.1 (classical PL principle). Let $\Omega = \{z \in \mathbb{C} \setminus \{0\} : \alpha < \arg(z) < \beta\}$, where $0 < \beta - \alpha < 2\pi$. Let $f \in \operatorname{Hol}(\Omega) \cap C(\overline{\Omega})$, where $|f| \leq M$ on $\partial\Omega$. Assume that $|f(z)| \leq C_1 e^{C_2|z|^k}$ as $|z| \to \infty$ for $z \in \overline{\Omega}$, where $0 < k < \pi/(\beta - \alpha)$. Then $|f| \leq M$ on $\overline{\Omega}$.

Here is an example from the spring 2015 analysis qualifying exam.

Example 8.1. Let $f \in Hol(\mathbb{C})$ be such that $|f(z)| \leq e^{|z|}$ and $\sup_{x \in \mathbb{R}} (|f(x)|^2 + |f(ix)|^2) < \infty$. Show that f is constant.

Apply the classical Phragmén-Lindelöf principle 4 times, once to each quadrant. Then f is bounded, so f is constant by Liouville's theorem.

8.3 Phragmén-Lindelöf for general domains

Let $\Omega, \tilde{\Omega} \subseteq \mathbb{C}$ be open and unbounded, and let $G : \Omega \to \tilde{\Omega}$ is an analytic isomorphism such that G extends to a homeomorphism $\overline{\Omega} \to \overline{\tilde{\Omega}}$. Then |G(z)| is large iff |z| is large. Then if φ is a PL function for $\tilde{\Omega}, \varphi \circ G$ is a PL function for Ω . (To check this, use that if $u \in SH(\tilde{\Omega})$, then $u \circ G \in SH(\Omega)$.)

Proposition 8.1. Let $\Omega = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0, \alpha < \operatorname{Re}(z) < \beta\}$. Then $\varphi(z) = e^{k \operatorname{Im}(z)}$ is a *PL* function for Ω for any $0 < k < \pi/(\beta - \alpha)$.

We will prove this next time. The idea is that we find a conformal map from the halfstrip to a sector with a disc removed. The map is $f(z) = e^{-icz}$ for some $0 < c < 2\pi/(\beta - \alpha)$.

9 Phragmén-Lindelöf for Strips and Cauchy's Integral Formula for Non-Holomorphic Functions

9.1 Phragmén-Lindelöf for a half-strip and a strip

Proposition 9.1 (PL for a half-strip). Let $\Omega = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0, \alpha < \operatorname{Re}(z) < \beta\}$, with $\alpha < \beta$ finite. Then $\varphi(z) = e^{k \operatorname{Im}(z)}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$.

Proof. Let $F(z) = e^{-icz}$, where $c < 2\pi/(\beta - \alpha)$. $F : \Omega \to \tilde{\Omega}$ is conformal, where $\tilde{\Omega} = -\{w \in \mathbb{C} : |w| > 1, c\alpha < \arg(w) < c\beta\}$. F is a homeomorphism $\overline{\Omega} \to \overline{\tilde{\Omega}}$. In $\tilde{\Omega}$, we have the PL function $\varphi(w) = |w|^{k/c}$, where $k/c < \pi/(c(\beta - \alpha))$. We get $\varphi(z) = \tilde{\varphi}(F(z)) = |F(z)|^{k/c} = e^{k \operatorname{Im}(z)}$ is a PL function for Ω .

Proposition 9.2 (PL for an entire strip). Let $\Omega = \{z \in \mathbb{C} : \alpha < \operatorname{Re}(z) < \beta\}$ with $\alpha < \beta$ finite. Then $\varphi(z) = e^{k \operatorname{Im}(z)}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$. Then $\varphi(z) = e^{k |\operatorname{Im}(z)|}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$.

Proof. Let $u \in SH(\Omega)$ be upper semicontinuous on $\overline{\Omega}$, $u \leq M$ on $\partial\Omega$, and $u(z) \leq \varphi(z)$ for large $z \in \overline{\Omega}$. We want to show that $u \leq M$ on $\overline{\Omega}$. By the previous result, we get that $u \leq \max(M, L)$ on $\Omega_1 = \Omega \cap \{z : \operatorname{Im}(z) > 0\}$, where $L = \max_{[\alpha,\beta]} u < \infty$. Similarly, using $z \mapsto -z$, we conclude that $u \leq \max(M, L)$ on $\Omega_2 = \Omega \cap \{z : \operatorname{Im}(z) < 0\}$. So u is bounded on Ω .

We claim that any positive constant is a PL-function for Ω . It suffices to construct a harmonic $\psi \geq 0$ such that $\psi(z) \to \infty$ as $|z| \to \infty$. We can take $\psi(z) = \operatorname{Re}(\sqrt{z-\gamma})$, where $\gamma < \alpha$. Then $\psi(z) = |z - \gamma|^{1/2} \cos(\arg(z - \gamma)/2) \sim |z^{1/2}|$ at ∞ in Ω . We conclude that $u \leq M$ on $\overline{\Omega}$. So $\varphi(z) = e^{k|\operatorname{Im}(z)|}$ is a PL function for Ω .

Corollary 9.1 (Hadamard's three line theorem). Let $\Omega = \{z \in \mathbb{C} : \alpha < \operatorname{Re}(z) < \beta\}$. Let $u \in SL(\Omega)$, upper semicontinuous on $\overline{\Omega}$, $u \leq A$ on $\partial\Omega$, and $u(z) \leq e^{k|\operatorname{Im}(z)|}$ for large $z \in \Omega$, where $0 < k < \pi/(\beta - \alpha)$. Let $M(x) = \sup_{\operatorname{Re}(z)=x} u(z)$ for $\alpha \leq x \leq \beta$. Then M is convex.

The proof is similar to ideas we've seen before, so we will just give the idea.

Proof. Here is the idea. Let $a, b \in \mathbb{R}$ be such that $M(x) = M(x) - ax - b \leq 0$ for $x = \alpha, \beta$. Show that $\tilde{M}(x) \leq 0$ for $\alpha \leq x \leq \beta$. If $\tilde{u}(z) = u(z) - a \operatorname{Re}(z) - b$, then $\tilde{u} \in SH(\Omega)$ has the right growth at ∞ , and $\tilde{M}(x) = \sup_{\operatorname{Re}(z)=x}(z) \implies \tilde{u} \leq 0$ on $\partial\Omega$. By the PL theorem applied to $\tilde{u}, \tilde{u} \leq 0$ in Ω . So $\tilde{M}(x) \leq 0$ on $[\alpha, \beta]$.

9.2 Cauchy's integral formula for non-holomorphic functions

Theorem 9.1 (Cauchy's integral formula for non-holomorphic functions). Let $\omega \subseteq \mathbb{C}$ be a bounded open set with piecewise C^1 boundary, and let $u \in C^1(\overline{\Omega})$. Then

$$u(z) = \frac{1}{2\pi i} \int_{\partial \omega} \frac{u(\zeta)}{\zeta - z} \, d\zeta 0 \frac{1}{\pi} \iint_{\omega} \frac{\partial u}{\partial \overline{\zeta}}(\zeta) \frac{1}{\zeta - z} L(d\zeta),$$

where $L(d\zeta)$ is the Lebesgue measure in ω .

Remark 9.1. The integral over ω makes sense, as $1/\zeta \in L^1_{loc}(\mathbb{C})$:

$$\iint_{|\zeta|<1} \frac{1}{|\zeta|} L(d\zeta) \stackrel{\zeta=re^{it}}{=} \iint dr \, dt < \infty.$$

Proof. Let $v \in C^1(\overline{\omega})$. By Green's formula,

$$\int_{\partial\omega} v(\zeta) \, d\zeta \stackrel{\zeta=\xi+i\eta}{=} \int_{\partial\omega} v(\zeta) \, d\xi + iv(\zeta) d\eta = \iint_{\omega} \left(i \frac{\partial v}{\partial \xi} - \frac{\partial v}{\partial \eta} \right) L(d\zeta) = 2i \iint_{\omega} \frac{\partial v}{\partial \overline{z}} L(d\zeta).$$

Apply this to $v(\zeta) = u(\zeta)/(\zeta - z)$ and $\omega_{\varepsilon} = \{\zeta \in \omega : |\zeta - z| > \varepsilon\}$ for small ε . We get

$$\int_{\partial \omega} \frac{u(\zeta)}{\zeta - z} \, d\zeta - \int_{|\zeta - z| = \varepsilon} \frac{u(\zeta)}{\zeta - z} \, d\zeta = 2i \iint_{\omega_{\varepsilon}} \frac{1}{\zeta - z} \frac{\partial u}{\partial \overline{\zeta}}(\zeta) \, L(d\zeta).$$

Letting $\varepsilon \to 0^+$, we get

$$\int_{|z-\zeta|=\varepsilon} \frac{u(\zeta)}{\zeta-z} \, d\zeta \to 2\pi i u(z),$$

and

$$\iint_{\omega_{\varepsilon}} \frac{1}{\zeta - z} \frac{\partial u}{\partial \overline{\zeta}} L(d\zeta) \to \iint_{\omega} \frac{1}{\zeta - z} \frac{\partial u}{\partial \overline{\zeta}}(\zeta) L(d\zeta) \in L^{1}$$

by dominated convergence.

_	_	_	

10 Relationships Between Compactly Supported and Holomoprhic Functions

10.1 Solving the inhomogeneous Cauchy-Riemann equation

Last time, we proved the Cauchy integral formula for non-holomorphic functions.

Definition 10.1. When $\Omega \subseteq \mathbb{R}^n$ is open and $f : \Omega \to \mathbb{C}$ is a function, we define the support of $f \operatorname{supp}(f) = \overline{\{x \in \Omega : f(x) \neq 0\}}$ (closure with respect to Ω).

Definition 10.2. When $0 \leq k \in \mathbb{N} \cup \{\infty\}$, let $C_0^k(\Omega) = \{u \in C^k(\Omega) : \operatorname{supp}(u) \subseteq \Omega \text{ is compact}\}.$

Proposition 10.1. Let $\psi \in C_0^k(\mathbb{C})$. Then there exists $u \in C^k(\mathbb{C})$ solving the inhomogeneous Cauchy-Riemann equation

$$\frac{\partial u}{\partial \overline{z}} = \psi.$$

Proof. Apply Cauchy's integral formula.

$$\psi(z) = -\frac{1}{\pi} \iint \frac{\partial \psi}{\partial \overline{\zeta}}(\zeta) \frac{1}{\zeta - z} L(d\zeta)$$

Make the substitution $\zeta \mapsto \zeta + z$.

$$= -\frac{1}{\pi} \iint \frac{\partial \psi}{\partial \overline{\zeta}} (\zeta + z) \frac{1}{\zeta} L(d\zeta)$$
$$= \frac{\partial \psi}{\partial \overline{\zeta}} \left(-\frac{1}{\pi} \iint \frac{\psi(\zeta + z)}{\zeta} L(d\zeta) \right)$$

We can differentiate under the integral sign because $1/\zeta \in L^1_{\text{loc}}$, and $\psi \in C^1_0$. So we can take

$$u(z) = -\frac{1}{\pi} \iint \frac{\psi(\zeta)}{\zeta - z} L(d\zeta) \stackrel{\zeta \to \zeta + z}{=} \iint \frac{\psi(\zeta - z)}{\zeta} L(d\zeta) \in C^k(\mathbb{C}).$$

10.2 Bounds on derivatives of holomorphic functons

Proposition 10.2. Let $\Omega \subseteq \mathbb{C}$ be open, and let $K \subseteq \Omega$ be compact. Then there exists $\psi \in C_0^1(\Omega)$ such that $\psi = 1$ in a neighborhood of K.

Here, ψ is called a **cutoff function**.

Proof. Let $\delta > 0$ be such that $\operatorname{dist}(x, K) \geq \delta$ for any $z \in \mathbb{C} \setminus \Omega$, and let $\tilde{K} = \{z \in \mathbb{C} : \operatorname{dist}(z, K) < \delta/2\}$. $\tilde{K} \subseteq \Omega$ is compact. Let also $\varphi \in C^1(\mathbb{C})$ with $\varphi \geq 0$, $\varphi(z) = 0$ for $|z| \geq 1$, and $\iint \varphi = 1$. For example, we can take

$$\varphi(z) = \begin{cases} B(1-|z|^2)^2 & |z| \le 1\\ 0 & |z| > 1 \end{cases}$$

for some B chosen so that $\iint \varphi = 1$. Let $\varphi_t(z) = t^{-2}\varphi(z/t)$, where t > 0. Then $\operatorname{supp}(\varphi_t) \subseteq \{|z| \leq t\}$, and $\iint \varphi_t = 1$ for any t.

Now consider

$$\psi(z) = \mathbb{1}_{\tilde{K}} * \varphi_{\delta/3} = \iint \varphi_{\delta/3}(z-\zeta) \mathbb{1}_{\tilde{K}}(\zeta) L(d\zeta)$$

Then $\psi \in C^1(\mathbb{C})$. If $\psi(z) \neq 0$, then there exists $\zeta \in \tilde{K}$ such that $|z - \zeta| \leq \delta/3$. We get that

$$\operatorname{dist}(z,K) \le \operatorname{dist}(\zeta,K) + |z_{\zeta}| \le \frac{\delta}{2} + \frac{\delta}{3} \le \frac{5}{6}\delta < \delta$$

So $\operatorname{supp}(\psi)$ is a compact subset of Ω . That is, $\psi \in C_0^1(\Omega)$. Moreover, for z with $\operatorname{dist}(z, K) \leq \delta/12$, $\operatorname{dist}(z - z\zeta, K) \leq \operatorname{dist}(z, K) + |\zeta| < \delta/2$, so

$$\psi(z) - 1 = \iint (\mathbb{1}_{\tilde{K}}(\zeta) - 1)\varphi_{\delta/3}(z - \zeta) L(d\zeta) = \iint (\mathbb{1}_{\tilde{K}}(z - \zeta) - 1)\varphi_{\delta/3}(\zeta)L(d\zeta) = 1. \quad \Box$$

Remark 10.1. This construction is valid in any Euclidean space, not just \mathbb{C} .

Proposition 10.3. Let $f \in \text{Hol}(\Omega)$. For any compact $K \subseteq \Omega$ and any open neighborhood $\omega \subseteq \Omega$ of K, we have for j = 0, 1, 2, ... that there exists a constant $C_j = C_{j,\omega,K}$ such that

$$\sup_{z \in K} |f^{(j)}(z)| \le C_j ||f||_{L^1(\omega)}.$$

Proof. Let ψ be as in the previous proposition. Apply Cauchy's integral formula to the function $\psi f \in C_0^1(\Omega) \subseteq C_0^1(\mathbb{C})$:

$$(\psi f)(z) = -\frac{1}{\pi} \iint \underbrace{\frac{\partial}{\partial \overline{\zeta}}(\psi f)(\zeta)}_{=\frac{\partial \psi}{\partial \overline{\zeta}}f} \frac{1}{\zeta - z} L(\zeta)$$

for all $z \in \mathbb{C}$. So for z in a neighborhood of K,

$$f(z) = -\frac{1}{\pi} \iint \frac{\partial \psi}{\partial \overline{\zeta}}(\zeta) \frac{f(\zeta)}{\zeta - z} L(d\zeta).$$

where the region of integration is $\operatorname{supp}(\frac{\partial \psi}{\partial \overline{\zeta}}) \cap K$. Differentiating under the integral sign, we get

$$f^{(j)}(z) = -\frac{j!}{\pi} \iint \frac{\partial \psi}{\partial \overline{\zeta}}(\zeta) \frac{f(\zeta)}{(\zeta - z)^{j+1}} L(d\zeta).$$

 So

$$\|f^{(j)}\|_{L^{\infty}(K)} \leq \frac{j!}{\pi\delta^{j+1}} \left\|\frac{\partial\psi}{\partial\overline{\zeta}}\right\|_{L^{\infty}} \|f\|_{L^{1}(\omega)},$$

where $|\zeta - z| \ge \delta$.

11 Runge's Theorem and Compact Exhaustion

11.1 Runge's theorem

Last time, we showed that if $\Omega \subseteq \mathbb{C}$ is open, $K \subseteq \Omega$ is compact, and $f \in Hol(\Omega)$, then

$$f(z) = -\frac{1}{\pi} \iint \frac{\partial \psi}{\partial \overline{\zeta}} \frac{f(\zeta)}{\zeta - z} L(ds),$$

where $\psi \in C_0^1(\Omega)$ and $\psi = 1$ near K.

Let $\Omega \subseteq \mathbb{C}$ be open, and let $\tilde{\Omega} \subseteq \Omega$ be a connected component of Ω . Then $\tilde{\Omega}$ is open, and $\partial \tilde{\Omega} \subseteq \partial \Omega \subseteq \mathbb{C} \setminus \Omega$.

Example 11.1. Let $K \subseteq \mathbb{C}$ be compact, and let $\Omega = \mathbb{C} \setminus K$. Then Ω has precisely 1 unbounded component. Indeed, if R > 0 is large, then $\{|z| > R\} \subseteq \Omega$ is connected, so it is contained in a single component.

Theorem 11.1 (Runge). Let $K \subseteq \mathbb{C}$ be compact, and let $A \subseteq \mathbb{C}$ be such that any bounded component of $\mathbb{C} \setminus K$ intersects A. Let f be holomorphic in a neighborhood of K. Then for every $\varepsilon > 0$, there is a rational function r(z) = p(z)/q(z) with p, q polynomials and $q(z) \neq 0$ (when $z \notin A$) such that $|f(z) - r(z)| \leq \varepsilon$ for all $z \in K$.

Proof. We can use the previous formula for f, where Ω is our neighborhood of K where f is holomorphic. Approximate the right hand side by a Riemann sum of the form

$$g(z) = \sum_{j} \frac{a_j}{\zeta_j - z},$$

where $\zeta_j \in \mathbb{C} \setminus K$. Then approximate each $1/(\zeta_j - z)$ by a rational function as in the theorem, using a "pole-pushing" argument. By approximating with suitable polynomials, we can "push" the pole from ζ_j to another point outside of A.

Corollary 11.1 (Runge's theorem for polynomials). Let $K \subseteq \mathbb{C}$ be compact and simply connected, and let f be holomoprhic in a neighborhood of K. Then f can be approximated by polynomials in z, uniformly on K.

Remark 11.1. The condition that A meets every bounded component of $\mathbb{C}\setminus K$ is necessary. Let V be a bounded component of $\mathbb{C}\setminus K$, ket $a \in V$, and let $f(z) = \frac{1}{z-a}$ be holomorphic in a neighborhood of K. Assume that for every $\varepsilon > 0$, there exists r(z) rational with no poles in V such that $|f(z) - r(z)| \le \varepsilon$ on K. Then $|1 - (z - a)r(z)| \le C\varepsilon$ for all $z \in K$. Now $\partial V \subseteq K$, so, by the maximum principle, $|1 - (z - a)r(z)| \le C\varepsilon$ for all $z \in V$. This is a contradiction when we set z = a.

Definition 11.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let $\omega \subseteq \Omega$ be open. Then ω is relatively compact if $\overline{\omega}$ is a compact subset of Ω .

Corollary 11.2. Let $\Omega \subseteq \mathbb{C}$ be open, and let $K \subseteq \Omega$ be compact. Assume that no component of $\Omega \setminus K$ is relatively compact in Ω . Then any function holomorphic in a neighborhood of K can be approximated uniformly on K by functions in Hol(Ω).

Proof. In view of Runge's theorem, we only need to check that if O is a bounded component of $\mathbb{C} \setminus K$, then $O \cap (\mathbb{C} \setminus \Omega) \neq \emptyset$. Indeed, if $O \subseteq \Omega$, then $\overline{O} \subseteq \Omega$. Here, \overline{O} is compact, and O is a component of $\Omega \setminus K$.

11.2 Compact exhaustion

Proposition 11.1 (compact exhaustion with good properties). Let $\Omega \subseteq \mathbb{C}$ be open. There exist compact sets $K_n \subseteq \Omega$ such that

- 1. $K_n \subseteq K_{n+1}$ for n = 1, 2, ...
- 2. $\bigcup_{n=1}^{\infty} K_n = \Omega$.
- 3. Every bounded component of $\mathbb{C} \setminus K_n$ intersects $\mathbb{C} \setminus \Omega$.

Proof. Set $K_n = \{z \in \mathbb{C} : |z| \leq n, \operatorname{dist}(z, \mathbb{C} \setminus \Omega) \geq 1/n\}$. Then we have the first two properties. Let us check that each bounded component of $\mathbb{C} \setminus K_n$ contains a bounded component of $\mathbb{C} \setminus \Omega$.

$$\mathbb{C} \setminus K_n = \{ |z| > n \} \cup \{ z : \operatorname{dist}(z, \mathbb{C} \setminus \Omega) < 1/n \}$$
$$= \{ |z| > n \} \cup \bigcup_{a \in \mathbb{C} \setminus \Omega} D(a, 1.n).$$

Let O be a bounded component of $\mathbb{C} \setminus K_n$. Then $O \subseteq \bigcup_{a \in \mathbb{C} \setminus \Omega} D(a, 1/n)$. Thus, there exists $a \in \mathbb{C} \setminus \Omega$ such that $D(a, 1/n) \subseteq \Omega$. Let V be the component of $\mathbb{C} \setminus \Omega$ such that $a \in V$. Then $V \subseteq \mathbb{C} \setminus \Omega \subseteq \mathbb{C} \setminus K_n$ is connected, and $V \cap O \neq \emptyset$. Thus, $V \subseteq O$, so V is bounded.

Next time, we will show that if $f \in \operatorname{Hol}(\Omega)$, there exist rational r_n , holomoprhic in Ω , such that $r_n \to f$ locally uniformly.

12 Applications of Runge's Theorem

12.1 Locally uniform approximation of holomorphic functions

Last time, we showed that if $\Omega \subseteq \mathbb{C}$, we can find an increasing sequence $K_n \subseteq \Omega$ of compact sets such that $\Omega = \bigcup_{n=1}^{\infty} K_n$ and such that every bounded component of $\mathbb{C} \setminus K_n$ contains a bounded component contains a bounded component of $\mathbb{C} \setminus \Omega$.

Corollary 12.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let $A \subseteq \mathbb{C} \setminus \Omega$ be such that each bounded component of $\mathbb{C} \setminus \Omega$ meets A. Let $f \in \operatorname{Hol}(\Omega)$. Then there exist rational functions r_n that have no poles outside of A such that $r_n \to f$ locally uniformly in Ω . If $\mathbb{C} \setminus \Omega$ has no bounded component,, then there exists a sequence of polynomials p_n such that $p_n \to f$ locally uniformly in Ω .

Proof. Let (K_n) be a compact exhaustion as before. By Runge's theorem and the property of the compact exhaustion, for every n, there exists a rational function r_n with no poles outside of A such that $|f - r_n| \leq 1/n$ on K_n . Since any compact $K \subseteq K_N \subseteq K_n$ for large $n \geq N$, we get $r_n \to f$ uniformly on K.

If $\mathbb{C} \setminus \Omega$ has no bounded component, then none of the sets $\mathbb{C} \setminus K_n$ has a bounded component. By Runge's theorem, for any n, there is a polynomial p_n such that $|f - p_n| \leq 1/n$ on K_n . So $p_n \to f$ locally uniformly in Ω .

Let $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the one-point compactification of \mathbb{C} .

Corollary 12.2. Let $\Omega \subseteq \mathbb{C}$ be such that $\hat{\mathbb{C}} \setminus \Omega$ is connected. Let $f \in Hol(\Omega)$. Then there exist polynomials p_n such that $p_n \to f$ locally uniformly.

Proof. If suffices to show that $\mathbb{C} \setminus K_n$ has no bounded component for all n. For contradiction, let V be a bounded component of $\mathbb{C} \setminus K_n$. Then there is a bounded component C of $\mathbb{C} \setminus \Omega$ such that $C \subseteq V$. In particular, $(\hat{\mathbb{C}} \setminus \Omega) \cap V \neq \emptyset$. Let $V' \subseteq \hat{\mathbb{C}}$ be the union of all the other components of $\mathbb{C} \setminus K_n$ (including the unbounded one) and $\{\infty\}$. Then $V \cap V' = \emptyset$, V and V' are open in $\hat{\mathbb{C}}$, and $V \cup V' \supseteq \hat{\mathbb{C}} \setminus \Omega$: $(\hat{\mathbb{C}} \setminus \Omega) \cap V \neq \emptyset$, and $(\hat{\mathbb{C}} \setminus \Omega) \cap V' \neq \emptyset$ (because ∞ is in the intersection). This contradicts the assumption that $\hat{\mathbb{C}} \setminus K_n$ is connected. \Box

12.2 Solving the inhomogeneous Cauchy-Riemann equation

Earlier, we solved the inhomogeneous Cauchy-Riemann equation for functions which are compactly supported. We even had a formula for it. Let's show a related result for noncompactly supported functions.

Theorem 12.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let $f \in C^1(\Omega)$. Then there exists $u \in C^1(\Omega)$ such that $\frac{\partial u}{\partial \overline{z}} = f$ in Ω .

Proof. Let $(K_j)_{j\geq 1}$ be a compact exhaustion of Ω , as before. Let $\psi_j \in C_0^1(\Omega)$ be such that $0 \leq \psi_j \leq 1$ and $\psi_j = 1$ near K_j . Let

$$\varphi_j = \begin{cases} \psi_j - \psi_{j-1} & j > 1\\ \psi_j & j = 1. \end{cases}$$

Then $\varphi_j \in C_0^1(\Omega)$, $\varphi_j = 0$ in a neighborhood of K_{j-1} , and sum $\sum_{j=1}^{\infty} \varphi_j$ has only finitely many nonzero terms for each $x \in \Omega$ (and hence converges). We can calculate

$$\sum_{j=1}^{\infty} \varphi_j = \lim_{N \to \infty} \sum_{j=1}^{N} \varphi_j = \lim_{N \to \infty} (\psi_1 + \sum_{j=2}^{N} (\psi_j - \psi_{j-1})) = \lim_{N \to \infty} (\psi_1 + \psi_N - \psi_1) = 1$$

This is called a **locally finite paritition of unity**. Write $f = \sum_{j=1}^{\infty} \varphi_j f$, where $\varphi_j f \in C_0^1(\Omega) \subseteq C_0^1(\mathbb{C})$. As $u_j f$ is compactly supported, there exists a function $u_j \in C^1(\mathbb{C})$ such that $\frac{\partial u_j}{\partial \overline{z}} = \varphi_j f$ (we can take $u_j(z) = (1/\pi) \iint \varphi_j f(\zeta)/(z-\zeta) L(ds)$).

Here is the problem: the sum $\sum_{j} u_j$ may not converge. We know that $\frac{\partial u_j}{\partial \overline{z}} = 0$ in a neighborhood of K_{j-1} , so u_j is holomorphic near K_{j-1} . By Runge's theorem, there exists a function $v_j \in \text{Hol}(\Omega)$ such that $|u_j - v_j| \leq 2^{-j}$ on K_{j-1} for all j. Now try the sum $u = \sum_{j=1}^{\infty} (u_j - v_j)$. We claim that $u \in C^1(\Omega)$ and $\frac{\partial u}{\partial \overline{z}} = f$. Let $K \subseteq \Omega$ be compact, and let N be such that $K \subseteq K_N$. Then

$$u = \sum_{j=1}^{N} (u_j - v_j) + \sum_{j=N+1}^{\infty} (u_j - v_j),$$

and $|u_j - v_j| \leq 2^{-j}$ on K, so $u \in C(\Omega)$. Since $\partial_{\overline{z}}(u_j - v_j) = 0$ in a neighborhood of K_{j-1} , $u_j - v_j$ is holomorphic in a neighborhood of K_N , where $j \geq N+1$. So the sum of the series $\sum_{j=N+1}^{\infty} (u_j - v_j)$ is holomorphic in K_N . Thus, $u \in C^1(\Omega)$, and we compute in K_N^o :

$$\frac{\partial}{\partial \overline{z}} = \sum_{j=1}^{N} \partial_{z_j} (u_j - v_j) = \sum_{j=1}^{N} \varphi_j f = \left(\sum_{\substack{j=1\\j=1}}^{N} \varphi_j + \sum_{\substack{j=N+1\\j=0 \text{ in } K_N}}^{\infty} \right) f = f. \qquad \Box$$

13 Mittag-Leffler's Theorem and Infinite Products of Holomorphic Functions

13.1 Mittag-Leffler's theorem

Last time, we showed that if $\Omega \subseteq \mathbb{C}$ is open and $f \in C^1(\Omega)$, then there exists some $u \in C^1(\Omega)$ such that $\frac{\partial u}{\partial \overline{z}} = f$ in Ω . Here is an application.

Theorem 13.1 (Mittag-Leffler). Let $\Omega \subseteq \mathbb{C}$ be open, and let $A \subseteq \Omega$ be a set with no limit points in Ω . For each $a \in A$, let p_a be a rational function of the form

$$p_a(z) = \sum_{j=1}^{N_a} \frac{c_{a_j}}{(z-a)^j}$$

for some c_{a_j} where $1 \leq N_a < \infty$. Then there exists a $f \in \operatorname{Hol}(\Omega \setminus A)$ such that for all $a \in A$, $f - p_a$ is holomorphic in a neighborhood of a.

Remark 13.1. In other words, f is a meromorphic function in Ω with poles only in A, and for any $a \in A$, p_a is the singular part of the Laurent expansion of f at a.

Proof. The idea is to solve the problem first in the smooth (C^1) category and then correct a smooth solution to get a holomorphic solution solving a $\overline{\partial}$ -problem.

The set A is at most countable, and we may assume A is infinite: $A = \{a_1, a_2, \ldots\}$. Let $U_j \subseteq \Omega$ be a small neighborhood of a_j such that $\overline{U}_j \cap \overline{U}_\ell = \emptyset$ for $j \neq \ell$, and let $\varphi_j \in C_0^k(U_j)$, where $k \geq 2$, be such that $\varphi_j = 1$ in a neighborhood of a_j . Define

$$g(z) = \sum_{j=1}^{\infty} p_{a-j}(z)\varphi_j(z)$$

for $z \in \Omega \setminus A$. For every compact $K \subseteq \Omega$, $U_j \cap K = \emptyset$ for all but finitely many j. So $g \in C^k(\Omega \setminus A)$, and near $a_j, g - p_{a_j} \equiv 0 \in C^K$.

Next, compute

$$\frac{\partial g}{\partial \overline{z}} = \sum_{j=1}^{\infty} \frac{\partial}{\partial \overline{z}} (p_{a_j} \varphi_j) = \sum_{j=1}^{\infty} p_{a_j} \frac{\partial \varphi_j}{\partial \overline{z}},$$

which is 0 near a_j for any j. Since $\frac{\partial g}{\partial \overline{z}} = 0$ on A, $\frac{\partial g}{\partial \overline{z}}$ extends to a C^{k-1} function on $\Omega: \frac{\partial g}{\partial \overline{z}} \in C^{k-1}(\Omega) \subseteq C^1(\Omega)$. Now let $u \in C^1(\Omega)$ be such that $\frac{\partial u}{\partial \overline{z}} = \frac{\partial g}{\partial \overline{z}}$ in Ω . Define $f(z) = g(z) - u(z) \in C^1(\Omega \setminus A)$. Then $\overline{\partial} f = 0$, so $f \in \operatorname{Hol}(\Omega \setminus A)$. In a neighborhood of $a_j \in A$, we write

$$f - p_{a_j} = \underbrace{g - p_{a_j}}_{\in C^k \text{ near } a_j} - \underbrace{u}_{\in C^1}.$$

Then $f - p_{a-j}$ is bounded in a set of the form $0 < |z - a_j| < r_j$ for small r_j , so $f - p_j$ has a removable singularity at a_j . So $f - p_{a_j}$ is holomorphic near a_j for all j.
13.2 Infinite products of holomorphic functions

Next, we will discuss Weierstrass's theorem, which basically says that any subset of $\Omega \subseteq \mathbb{C}$ with no limit points in Ω is the zero set of some holomorphic function. The idea is to try infinite products of holomorphic functions. You can see how Mittag-Leffler's theorem is inspired by this result.²

Proposition 13.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let (f_j) be a sequence in Hol (Ω) . Assume that for every compact $K \subseteq \Omega$, there exists $N \in \mathbb{N}$ and a convergence series $\sum_{j=N}^{\infty} M_j < \infty$ with $M_j \ge 0$ such that f_j is nonvanishing on K for all $j \ge N$ and that $|\operatorname{Log}(f_j(z))| \le M_j$, wher $j \ge N$, and $z \in K$. This is the principal branch of log: $\arg \in (-\pi, \pi]$. Then the sequence $(\prod_{j=1}^n f_j)$ converges locally uniformly in Ω , $f(z) := \lim_{n\to\infty} \prod_{j=1}^n f_j(z) \in \operatorname{Hol}(\Omega)$, and we write $f(z) = \prod_{j=1}^{\infty} f_j(z)$. The zeros of f are given by the union of the zeros of the f_j , counting multiplicities.

Proof. Let $K \subseteq \Omega$ be compact, and let N, M_j be as in the proposition. For $j \geq N$, write $f_j = e^{\operatorname{Log}(f_j)}$. Then

$$\prod_{j=N}^{n} f_j = \exp \left(\sum_{j=N}^{n} \operatorname{Log}(f_j) \right)_{\text{converges uniformly on } K},$$

so, using $|e^z - e^w| \le e^{\max(\operatorname{Re}(z),\operatorname{Re}(w))}|z - w|$, we write

$$\left|\prod_{j=N}^{n} - \prod_{j=N}^{m} f_{j}\right| \le C_{K} \sum_{j=n+1}^{m} |\operatorname{Log}(f_{j})| \to 0$$

uniformly on K. To show that $|e^z - e^w| \le e^{\max(\operatorname{Re}(z),\operatorname{Re}(w))}|z - w|$, note that

$$e^{z} - e^{w} = \int_{0}^{1} \frac{f}{dt} e^{tz + (1-t)w} dt.$$

Example 13.1. Assume that $(f_j) \in \text{Hol}(\Omega)$ is such that for every compact $K \subseteq \Omega$, we have $\sum_{j=1}^{\infty} \sup_K |1-f_j| < \infty$ (normal convergence on each compact). Then the proposition applies, and the product $\prod_{j=1}^{\infty} f_j$ converges locally uniformly in Ω .

²Mittag-Leffler was a student of Weierstrass.

14 Weierstrass's Theorem

14.1 Constructing holomorphic functions with a given zero set

Here is Weierstrass's theorem, which allows us to construct holomorphic functions with a prescribed zero set.

Theorem 14.1 (Weierstrass). Let $\Omega \subseteq \mathbb{C}$ be open, and let $A \subseteq \Omega$ be a set with no limit point in Ω . Assume that for any $a \in A$, we are given a positive integer n(a). There exists $f \in \operatorname{Hol}(\Omega)$ such that $f^{-1}(\{0\}) = A$, and the multiplicity of each $a \in A$ is n(a).

Proof. We may assume that A is infinite and write $A = \{a_k, k = 1, 2, ...\}$ with $a_k \neq a_{k'}$ if $k \neq k'$. Call $n_k := n(a_k)$. We shall try to construct f as an infinite product of the form

$$\prod_{k=1}^{\infty} (z-a_k)^{n_k} e^{g_k(z)},$$

where $g_i \in \text{Hol}(\Omega)$ are chosen to achieve convergence.

Introduce the compact exhaustion $K_j = \{z \in \mathbb{C} : |z| \leq j, \operatorname{dist}(z, \mathbb{C} \setminus \Omega) \geq 1/j\}$. For each k, we have $a_k \in K_j$ for all j large enough. Define the sequence

$$j(k) = \begin{cases} 1 & a_k \in K_1 \\ \max\{j : a_k \notin K_j\} & a_k \notin K_1. \end{cases}$$

We have $j(k) \to \infty$ as $k \to \infty$: If j(k) < M for some M, for infinitely many $k, a_k \notin K_{j(k)}$ for all large k. Then $a_k \in K_{j(k)+1} \subseteq K_M$ for infinitely many K, which cannot occur since A has no limit points in Ω .

We claim that for any k large enough, there exists $f \in \text{Hol}(\Omega)$ such that $f_k^{-1}(\{0\}) = \{a_k\}$, the multiplicity of a_k is n_k , and such that there is a holomorphic branch g_k of $\log(f_k)$ in a neighborhood of $K_{j(k)}$. We have $a_k \notin K_{j(k)}$, so $|a_k|j(k)$ or $\operatorname{dist}(a_k, \mathbb{C} \setminus \Omega) < 1/j(k)$. We deal with each case:

- 1. $|a_k| > j(k)$: Take $f_k(z) = (z a_k)^{n_k}$ and then take a holomorphic branch L_k of $\log(z a_k)$ in $\mathbb{C} \setminus \{ta_k, t \ge 1\} \supseteq K_{j(k)}$. Then $g_k = n_k L_k$.
- 2. dist $(a_k, \mathbb{C} \setminus \Omega) < 1/j(k)$: This distance is $\int_{z \in \mathbb{C} \setminus \Omega} |a_k z|$, and pick $b_k \in \mathbb{C} \setminus \Omega$ such that dist $(a_k, \mathbb{C} \setminus \Omega) = |a_k b_k|$. This is the infimum of a continuous function over a closed set, and it goes to ∞ as $|z| \to \infty$, so the value is achieved; moreover, $b_k \in \partial\Omega$. Take

$$f_k(z) = \left(\frac{z-a_k}{z-b_k}\right)^{n_k} \in \operatorname{Hol}(\Omega)$$

Then $\{ta_k + (1-t)b_k : 0 \le t \le 1\} \cap K_{j(k)} = \emptyset$ because $dist(ta_k + (1-t)b_k, \mathbb{C} \setminus \Omega) \le t|a_k - b_k| < 1/j(k)$. Now the Möbius transformation

$$T(z) = \frac{z - a_k}{z - b_k}$$

maps $\mathbb{C} \setminus [a_k, b_k]$ to $\mathbb{C} \setminus \overline{R}_-$, and thus we can take $g_k(z) = n_k \operatorname{Log}(T_k(z))$, where this is the principal branch of T_k . So g_k is holomorphic in a neighborhood of $K_{j(k)}$.

This proves the claim.

Now any bounded component of $\mathbb{C} \setminus K_{j(k)}$ meets $\mathbb{C} \setminus \Omega$, so by Runge's theorem, for any k, there is a holomorphic function $h_k \in \text{Hol}(\Omega)$ such that $|g_k - h_k| \leq 2^{-k}$ on $K_{j(k)}$. Define $\tilde{f}_k := e^{-h_k} f_k \in \text{Hol}(\Omega)$. Then \tilde{f}_k does not vanish on $K_{j(k)}$. On $K_{j(k)}$, $\tilde{f}_k = e^{g_k - h_k}$, so (using $|e^z - 1| \leq |z|e^{|z|}$) we get $|\tilde{f}_k - 1| \leq 2^{-k}e$ on $K_{j(k)}$. If $K \subseteq \Omega$, then $K \subseteq K_{j(k)}$ for large k (as $j(k) \to \infty$ when $k \to \infty$), and this estimate shows that the infinite product

$$f = \prod_{k=1}^{\infty} f_k$$

converges locally uniformly and defines $f \in Hol(\Omega)$ which solves the problem.

14.2 Characterization of meromorphic functions

Weierstrass's theorem gives us an immediate way to characterize meromorphic functions.

Corollary 14.1. Let g be meromorphic in Ω . Then g = f/h, where $f, h \in Hol(\Omega)$.

Proof. Let $h \in \text{Hol}(\Omega)$ be such that the set of zeros of h agrees with the set of poles of g, with multiplicities. Then $f := gh \in \text{Hol}(\Omega)$.

15 Corollaries of Weierstrass's Theorem and Entire Functions of Finite Order

15.1 Existence of a holomorphic function with given Taylor expansion near infinitely many points

Last time, we proved Weierstrass's theorem, which says that if $A \subseteq \Omega$ is a set with no limit points, then we can construct $f \in \text{Hol}(\Omega)$ with zero set A (with multiplicities).

Proposition 15.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let $A = \{\alpha_j\}_{j=1}^{\infty}$ be an infinite set with no limit points in Ω . For each $j \geq 1$, let $m_j \geq 0$ be an integer, and let f_j be holomorphic near α_j . Then there exists some $f \in \text{Hol}(\Omega)$ such that for all j, $f(z) - f_j(z)$ is $O(|z - \alpha_j|^{m_j+1})$ as $z \to \alpha_j$. (Thus, the Taylor expansion of f can be prescribed up to order m at each α_j .)

Proof. By Weierstrass's theorem, we can construct $g \in \operatorname{Hol}(\Omega)$ have zeros of order $m_j + 1$ at α_j for all j. By Mittag-Leffler's theorem, there exists a meromorphic function h in Ω with poles at $\{\alpha_j\}$ only such that $h - f_j/g = r_j$ is holomorphic near α_j for all j. Define $f = gh \in \operatorname{Hol}(\Omega \setminus A)$. Then $f/g - f_j/g$ is holomorphic near α_j , so $f - f_j$ is holomorphic near α_j . So $f \in \operatorname{Hol}(\Omega)$. Also, $f - f_j = r_j g$, where r_j is O(1) and g is $O(|z - a_j|^{m_j+1})$ as $z \to \alpha_j$.

15.2 Existence of a holomorphic function which cannot be extended

Here is another corollary of Weierstrass's theorem.

Corollary 15.1. Let Ω be open. There exists $f \in Hol(\Omega)$ which cannot be continued analytically to any larger open set. More precisely, if $a \in \Omega$, $g \in Hol(D(a, r))$, and f = g near a, then $D(a, r) \subseteq \Omega$.

We say that Ω is the **natural domain of holomorphy** for f.

Proof. Let $\{\alpha_k\}_{k=1}^{\infty}$ be an enumeration of all points in Ω with rational coordinates. Let $(z_j)_{j=1}^{\infty}$ be a sequence in Ω such that each α_k such that each α_k occurs an infinite number of times: $(\alpha_1, \alpha_1, \alpha_1, \alpha_2, \alpha_1, \alpha_2, \alpha_3, \alpha_1, \ldots)$. Choose a compact exhaustion of Ω : $K_j \subseteq \Omega$ with $K_j \subseteq K_{j+1}^o$ and $\bigcup_j K_j = \Omega$. Let $r_j = \operatorname{dist}(z_j, \mathbb{C} \setminus \Omega)$ so that $D(z_j, r_j)$ is the largest open disc centered at z_j contained in Ω . For each j, let $w_j \in D(z_j, r_j) \setminus K_j$. We let $A = \{w_j\}$; each compact set is contained in K_j for some j, so A has no limit points in Ω . Thus there exists $f \in \operatorname{Hol}(\Omega)$ such that $f^{-1}(\{0\}) = A$. Now let $a \in \Omega$ have rational coordinates and consider D(a, r), where $r = \operatorname{dist}(a, \mathbb{C} \setminus \Omega)$. We have: $a = z_j$ for infinitely many j, so D(a, r) contains infinitely many points w_j . Thus, by the uniqueness of analytic continuation, no function which is equal to f near a can be holomorphic in any larger disc centered at a.

Remark 15.1. When n > 1, this property does not hold for functions in \mathbb{C}^n .

15.3 Entire functions of finite order

Definition 15.1. We that $f \in \text{Hom}(\mathbb{C})$ is of **finite order** if there is some $\sigma \in \mathbb{R}$ such that $|f(z)| \leq Ce^{|z|^{\sigma}}$ for all $z \in \mathbb{C}$ for some C > 0. The **order** ρ of f is the infimum of such σ .

Observe that $\rho \in [0,\infty)$. Also, f has order ρ iff for all $\varepsilon > 0$, $f(z)/e^{|z|^{\rho+\varepsilon}}$ is bounded on \mathbb{C} and $f(z)/e^{|z|^{\rho-\varepsilon}}$ is unbounded on \mathbb{C} .

Example 15.1. Polynomials have order 0.

Example 15.2. e^z , $\cos(z)$, and $\sin(z)$ all have order 1. The function ze^z still has order 1. The function e^{z^m} has order m.

Example 15.3. The order need not be an integer. For example, $\cos(\sqrt{z})$ (defined by its Taylor expansion) has order 1/2.

Example 15.4. Let $f \in L^1(\mathbb{R})$ be compactly supported; that is, there exists some R such that f(x) = 0 for a.e. x with |x| > R. Then the **Fourier transform** of f,

$$\hat{f}(\xi) = \int e^{-ix\xi} f(x) \, dx$$

for $\xi \in \mathbb{R}$, can be extended to the entire function

$$\hat{f}(\zeta) = \int e^{-ix\zeta} f(x) \, dx$$

for $\zeta \in \mathbb{C}$. Then

$$|\hat{f}(\zeta)| \le \int_{-R}^{R} e^{x \operatorname{Im}(\zeta)} |f(x)| \, dx \le e^{R|\zeta|} ||f||_{L^1},$$

so \hat{f} is of order ≤ 1 .

Remark 15.2. Let $M(r) = \max_{|z|=r} |f(z)|$. We have

$$\rho = \limsup_{r \to \infty} \frac{\log(\log(M(r)))}{\log(r)} = \lim_{R \to \infty} \left(\sup_{r \ge R} \frac{\log(\log(M(r)))}{\log(r)} \right)$$

16 Jensen's Formula

16.1 Example of entire functions of finite order

Last time, we talked about entire holomorphic functions of finite order $(|f(z)| \leq Ce^{|z|^{\sigma}}$ for some $\sigma \in \mathbb{R}$).

Proposition 16.1. Let f be entire of finite order ρ which is nonvanishing. Then $f = e^g$, where g is a polynomial of degree ρ .

Proof. Write $f = e^g$, where g is entire. For any $\varepsilon > 0$, there exists a constant C_{ε} such that

$$|f(x)| \le C_{\varepsilon} e^{|z|^{\rho + \varepsilon}}$$

So $\operatorname{Re}(g(z)) \leq |z|^{\rho+\varepsilon} + \tilde{C}_{\varepsilon}$. By the Borel-Carathéodory inequality (proved in homework), g is a polynomial of degree $\leq \rho$. As f has order ρ , we get $\operatorname{deg}(g) = \rho$.

16.2 Jensen's formula

Theorem 16.1 (Jensen's formula). Let $f \in \text{Hol}(|z| < R)$, and assume that $f(0) \neq 0$. Let 0 < r < R, and let z_1, \ldots, z_n be the zeros of f in the disc |z| < r, each zero repeated according to its multiplicity. Set $r_j = |z_j|$ for each $1 \le j \le n$. Then

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi = \log \left(\frac{|f(0)|r^n}{r_1 \cdots r_n} \right).$$

If f has no zeros, this integral equals $\log |f(0)|$.

Proof. Replacing f(z) by f(rz), we can assume that r = 1. Split into cases of increasing generality:

- 1. $f \neq 0$ on $|z| \leq 1$: Then $\log |f|$ is harmonic in a neighborhood of $|z| \leq 1$, and Jensen's formula follows from the mean value property.
- 2. $f \neq 0$ on |z| = 1: Let

$$B_j(z) = \frac{\overline{z_j}(z-z_j)}{r_j(\overline{z}_j z - 1)}.$$

This is called a **Blaschke factor**. Then B_j is holomorphic near $|z| \leq 1$. B_j has a simple zero at z_j only, and $|B_j(z)| \leq 1$ when |z| = 1. Define $g = f/(B_1 \cdots B_n)$; g is holomorphic near $|z| \leq 1$, nonvanishing, and |g| = |f| when |z| = 1. Apply the previous step to g to get

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\varphi})| \, d\varphi = \log |g(0)| = \log \left(\frac{|f(0)|}{r_1 \cdots r_n}\right).$$

3. f has (finitely many) zeros on |z| = 1: Apply Jensen's formula to |z| < r, where r < 1 is close to 1:

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi = \log |g(0)| = \log \left(\frac{|f(0)|r^n}{r_1 \cdots r_n}\right).$$

Let $r \to 1$, and pass to the limit using dominated convergence. If $f(e^{i\varphi_0}) = 0$, estimate $|\log |f(re^{i\varphi})|$ as $r \to 1$ and $|\varphi - \varphi_0|$ is small: $f(z) = (z - e^{i\varphi_0})^m g(z)$, where g is non-vanishing. We need to consider only $|\log |r - e^{i\psi}||$ as $r \to 1$ and ψ is near 0. We get that $|\log |r - e^{i\psi}|| \le C(1 + \log(1/|\psi|))$. In particular,

$$|r - e^{i\psi}|^2 = r^2 + 1 - 2r\cos(\psi) = r\psi^2 + O(\psi^4),$$

where we have used $\cos(\psi) = 1 - \psi^2/2 + O(\psi^4)$. Altogether, if $\varphi_1, \cdots, \varphi_k$ are the arguments of the zeros of f along the circle |z| = 1, we get:

$$|\log |f(re^{i\varphi})| \le C\left(1 + \sum_{j=1}^k \log_+\left(\frac{1}{|\varphi - \varphi_j|}\right)\right) \in L^1,$$

where $\log_+(t) = \max(\log(t), 0)$. So we can indeed apply the dominated convergence theorem to get Jensen's formula.

16.3 Number of zeros in a disc

Corollary 16.1. Let $f \in \text{Hol}(|z| < R)$, and let n = n(r) be the number of zeros of f in |z| < r, counted with multiplicities. Let the zeros be $z_1, \ldots, z_{n(r)}$ with $r_j = |z_j|$. Then

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi - \log |f(0)| = \int_0^r \frac{n(t)}{t} \, dt.$$

Proof. Rewrite Jensen's formula using the following computation:

$$\log\left(\frac{r^n}{r_1\cdots r_n}\right) = \sum_{j=1}^n \int_{r_j}^r \frac{1}{t} dt$$
$$= \sum_{j=1}^n \int_0^r \frac{\mathbb{1}_{(r_j,\infty)}(r)}{t} dt$$
$$= \int_0^r \frac{1}{t} \underbrace{\left(\sum_{j=1}^n \mathbb{1}_{(r_j,\infty)}(r)\right)}_{=n(t)} dt$$
$$= \int_0^r \frac{n(t)}{t} dt.$$

Remark 16.1. In particular,

$$\int_0^r \frac{n(t)}{t} \, dt \ge \int_{r/2}^r \frac{n(t)}{t} \, dt \ge n(r/2) \log(2).$$

Next time, we will use Jensen's formula to prove the following fact about entire functions of finite order.

Theorem 16.2. Let f be entire of finite order ρ , and let $n(r) = |\{z : |z| < r \cdot f(z) = 0\}|$. Then for all $\varepsilon > 0$ and $r \ge 1$,

$$n(r) \le C_{\varepsilon} r^{\rho + \varepsilon}.$$

17 Factorization of Entire Functions of Finite Order

17.1 Number of zeros of entire functions of finite order

Last time, we proved Jensen's formula.

Theorem 17.1. Let f be entire of finite order ρ , and let $n(r) = |\{z : |z| < r, f(z) = 0\}|$. Then for all $\varepsilon > 0$ there exists a constant C_{ε} such that

$$n(r) \le C_{\varepsilon} r^{\rho + \varepsilon}$$

for all $r \geq 1$.

Proof. If $f(0) \neq 0$, then

$$\int_{0}^{2r} \frac{n(t)}{t} dt \ge \int_{r}^{2r} \frac{n(t)}{t} dt = n(r) \log(2),$$

where the inequality comes from the fact that n is increasing. Using Jensen's formula,

$$\log(2)n(r) \le \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi + C \le C_{\varepsilon} + Cr^{\rho+\varepsilon} + C \le C_{\varepsilon}r^{\rho+\varepsilon}.$$

If f(0) = 0, apply the previous argument to $g(z) = f(z)/z^m$, where *m* is the multiplicity of 0. Since $n(r) = n_g(r) + m$, we get the result.

17.2 Weierstrass factors and Weierstrass' theorem for \mathbb{C}

Definition 17.1. When $m \ge 0$ is an integer, we define the Weierstrass factors³ as

$$E_m(z) = (1-z)e^{\sum_{i=1}^m z^j/j}.$$

Remark 17.1. We would like to consider infinite products of the form

$$\prod (1 - z/a_k) e^{-g(z/a_k)},$$

where $|a_k| \to \infty$ and where g should approximate $\log(1-z) = -\sum_{j=1}^{\infty} z^j/j$ for |z| < 1. The idea of the Weierstrass factors is that the factors are the partial sums of this approximation.

Lemma 17.1. For all |z| < 1,

$$|1 - E_m(z)| \le |z|^{m+1}.$$

³Weierstrass used these in his proof of Weierstrass' theorem. We did not.

Proof. Let $h(z) = 1 - E_m(z)$, so h(0) = 0. Compute

$$h'(z) = e^{\sum_{j=1}^{m} z^j/j} (1 + z\varphi'(z) - \varphi'(z))' = z^m e^{\sum_{j=1}^{m} z^j/j}.$$

So $h(z) = O(|z|^{m+1})$, and we see that $h(z)/z^{m+1}$ is holomorphic on \mathbb{C} . We have

$$h'(z) = z^m (1 + a_1 z + a_2 z^2 + \cdots)$$

with $a_j \ge 0$ for all j. Integrating, we get

$$h(z) = z^{m+1}(b_0 + b_1 z + b_2 z^2 + \cdots),$$

with $b_j \ge 0$ for all j. If we write $g(z) = h(z)/z^{m+1}$, then

$$|g(z)| \le g(|z|) \le g(1) = h(1) = 1.$$

Theorem 17.2 (Weierstrass' theorem for \mathbb{C}). Let $(a_k)_{k=1}^{\infty}$ be a sequence in $\mathbb{C} \setminus \{0\}$ such that $|a_k| \to \infty$ as $k \to \infty$. Then the canonical product

$$f(z) = \prod_{k=1}^{\infty} E_k(z/a_k)$$

converges locally uniformly in \mathbb{C} and defines an entire function f such that $f^{-1}(\{0\}) = \{a_k\}$ and the multiplicity of $a \in f^{-1}(\{0\})$ is the number of k such that $a = a_k$.

Proof. It suffices to check that for any compact set $K \subseteq \mathbb{C}$,

$$\sum_{k=1}^{\infty} \sup_{K} |1 - E_k(z/a_k)| < \infty.$$

 $K \subseteq \{|z| \le |a_k|/2\}$ for all k large enough, and by the lemma,

$$|a - E_k(z/a_k)| \le |z/a_k|^{k+1} \le 2^{-k}$$

The result follows.

17.3 Factorization of entire functions of finite order

Now assume that f is entire of finite order ρ with the zeros $a_k \neq 0$ counted with multiplicities such that $|a_1| \leq |a_2| \leq \cdots$ and $|a_k| \to \infty$.

Proposition 17.1. The series

$$\sum_{k=1}^{\infty} \frac{1}{|a_k|^{m+1}} < \infty.$$

provided that $m > \rho - 1$.

Proof. Write

$$\sum_{|a_k|\geq 1} |a_k|^{-m-1} = \sum_{j=0}^{\infty} \underbrace{\left(\sum_{\substack{2^j\leq |a_k|\leq a^{j+1}\\2^{-j(m+1)}n(2^{j+1})}} |a_k|^{-m-1}\right)}_{2^{-j(m+1)}n(2^{j+1})}$$
$$\leq \sum_{j=0}^{\infty} C_{\varepsilon} 2^{(j+1)(\rho+\varepsilon)} 2^{-j(m+1)}$$
$$\leq C_{\varepsilon} \sum_{j=0}^{\infty} 2^{j(\rho+\varepsilon-m-1)} < \infty$$

if $\rho + \varepsilon < m + 1$.

Proposition 17.2. Let m be the smallest integer such that $m > \rho - 1$ (so that $m \le \rho < m + 1$). The canonical product

$$\prod_{k=1}^{\infty} E_m(z/a_k)$$

converges locally uniformly in \mathbb{C} .

Remark 17.2. The improvement here is that we can use a fixed Weierstrass factor here instead of having it depend on k.

Proof. If $|z| < a_k/2$, then $|1 - E_m(z/a_k)| \le |z/a_k|^{m+1}$. So for compact $K \subseteq \mathbb{C}$,

$$\sum_{K} \sup_{K} |1 - E_m(z/a_k)| < \infty.$$

To summarize, we can write:

$$f(z) = e^{g(z)} z^p \prod_{k=1}^{\infty} E_m(z/a_k),$$

where o is the multiplicity of 0 as the zero of f, and g is entire. This will allow us to understand the structure of entire functions of finite order in the following way:

Theorem 17.3 (Hadamard). The function g is a polynomial of degree $\leq \rho$.

18 Hadamard Factorization

18.1 Lower bound on the product of Weierstrass factors

Let f be entire of finite order ρ , with zeros (a_k) such that $0 < |a_1| \le a_2| \le \cdots$. Let $m \in \mathbb{N}$ be such that $m \le \rho < m + 1$. Then we have the **Hadamard factorization**:

$$f(z) = e^{g(z)} z^p \prod_{k=1}^{\infty} E_m(z/a_k),$$

where g is entire, and p is the order of the zero at z = 0.

Theorem 18.1 (Hadamard). The function g is a polynomial of degree $\leq p$.

We need a good lower bound on the canonical product away from the zeros $\{a_k\}$.

Proposition 18.1. For any $s \in \mathbb{R}$ such that $\rho < s < m+1$, there is a constant $C_s = C > 0$ such that

$$\left|\prod_{k=1}^{\infty} E_m(z/a_k)\right| \ge e^{-C|z|^s}$$

for all $z \in \mathbb{C} \setminus \bigcup D(a_k, |a_k|^{-m-1})$.

Proof. We need the following 2 estimates for $E_m(z)$:

1. $|E_m(z)| \ge e^{-C|z|^{m+1}}$ when |z| < 1/2: Write

$$E_m(z) = (1-z)e^{\sum_{j=1}^m z^j - j} = e^w,$$

where

$$w = \log(1-z) + \sum_{j=1}^{m} \frac{z^j}{j} = -\sum_{j=m+1}^{\infty} \frac{z^j}{j}.$$

So $|w| \leq 2|z|^{m+1}$, and the estimate follows.

2. $E_m(z)| \ge |1 - z|e^{-C|z|^m}$ when |z| > 1/2: Write

$$|E_m(z)| \ge |1 - z|e^{-|\sum_{j=1}^m z^j/j|},$$

where

$$\left|\sum_{j=1}^{m} \frac{z^{j}}{j}\right| \leq |z|^{m} \sum_{j=1}^{m} \frac{1}{|z|^{m-j}} \leq C|z|^{m}.$$

We write next

$$\prod_{j=1}^{\infty} E_m(z/a_k) = \prod_{\substack{|z/a_k| < 1/2 \\ = A}} E_m(z/a_k) \prod_{\substack{|z/a_k| \ge 1/2 \\ = B}} E_m(z/a_k).$$

The first estimate gives

$$|A| \ge \prod_{|z/a_k| < 1/2} e^{-C|z/a_k|^{m+1}} = e^{-C|z|^{m+1}\sum_{|a_k| > 2|z|} 1/|a_k|^{m+1}}.$$

Now if $\rho < s < m + 1$, then $\sum 1/|a_k|^s < \infty$ (by the same argument as in last lecture). Then $|a_k|^{-m-1} = |a_k|^{-s}|a_k|^{s-m-1} \le C|a_k|^{-s}|z|^{s-m-1}$, so we get the lower bound

$$|A| \ge e^{-C_s|z|^s}.$$

Next, the second estimate gives

$$|B| \ge \prod_{|z/a_k| > 1/2} |1 - z/a_k| \prod_{\substack{|z/a_k| \ge 1/2 \\ =\exp(-C|z|^m \sum 1/|a_k|^m)}} e^{-C|z/a_k|^m}$$

•

To bound this second term, we have $|a_k|^{-m} = |a_k|^{-s} |a_k^{s-m} \le C|z|^{s-m} |a_k|^{-s}$, so

$$\prod_{|z/a_k| \ge 1/2} e^{-C|z/a_k|^m} \ge e^{-C_s|z|^s}.$$

Finally, using $|z - a_k| \ge 1/|a_k|^{m+1}$ for all k, we get

$$\prod_{|z/a_k|\geq 1/2} |1-a/z_k| \geq \prod_{|z/a_k|\geq 1/2} \frac{1}{|a_k|^{m+2}}.$$

Taking logs, we get

$$\sum_{|a_k|\leq 2|z|}(m+2)\log|a_k|\leq O(1)\log(2|z|)\underbrace{n(2|z|)}_{\leq C_\varepsilon|z|^{\rho+\varepsilon}}\leq O(1)|z|^s.$$

The result follows.

18.2 Proof of Hadamard's theorem

Let $\Omega = \mathbb{C} \setminus \bigcup D(a_k, 1/|a_k|^{m+1})$ be the domain from the previous proposition.

Proposition 18.2. There exists a sequence $R_k \to \infty$ such that $\{|z| = R_k\} \subseteq \Omega$.

Proof. Recall that $\sum_{k=1}^{\infty} 1/|a_k|^{m+1} < \infty$. Pick N so that $\sum_{k=N}^{\infty} 1/|a_k|^{m+1} < 1/2$. Set $A_k = \{x \in \mathbb{R} : |x - |a_k|| \le |a_k|^{-m-1}\}$. Then $\sum_{k=N}^{\infty} < 1$. Given $L \in \mathbb{N}$ large, let $r \in [L_1, L+1] \setminus \bigcup_{k=N}^{\infty} A_k$; the set $\bigcup_{k=N}^{\infty} A_k$ has Lebesgue measure < 1. Then if |z| = r,

$$|z - a_k| \ge ||z| - |a_k|| \ge \frac{1}{|a_k|^{m+1}}.$$

If $L \ge L_0$ for large L_0 , we also get

$$|z-a_k| \geq \frac{1}{|a_k|^{m+1}}$$

for $1 \leq k \leq N$, and the result follows.

Now we can prove Hadamard's theorem. Recall that we have

$$f(z) = e^{g(z)} z^p \prod_{k=1}^{\infty} E_m(z/a_k)$$

Proof. When $|z| = R_j$, we have

$$|e^{g(z)}| = \frac{|f(z)|}{|z^{p}| \underbrace{\prod_{z \in C_{\varepsilon} \exp(-|z|^{\rho+\varepsilon})}}_{\geq C_{\varepsilon} \exp(-|z|^{\rho+\varepsilon})} \leq C_{\varepsilon} e^{|z|^{\rho+\varepsilon}}$$

for al $\varepsilon > 0$. By the Borel-Carathéodory estimate, which says

$$\sup_{|z|=r} |g(z)| \le \frac{2r}{R-r} \sup_{|z|=R} \operatorname{Re}(g(z)) + \frac{R+r}{R-r} |g(0)|, \qquad r < R,$$

there exists a sequence $R_j \to \infty$ such that

$$|g(z)| \le C_{\varepsilon} + |z|^{\rho+\varepsilon}, \qquad |z| = R_j, j = 1, 2, \dots$$

By the usual Cauchy's estimates argument, g is a polynomial of degree $\leq \rho$.

Γ	1

19 Applications of Hadamard Factorization and Properties of the Γ-Function

19.1 Minimum modulus theorem and range of entire functions of finite order

Last time, we proved the Hadamard factorization for entire functions of finite order:

$$f(z) = e^{g(z)} z^p \prod_{k=1}^{\infty} E_m(z/a_k),$$

where (a_k) are the zeros of f such that $0 < |a_1| \le |a_2| \le \cdots$, p is the order of the zeros at $0, m \le \rho < m + 1$, and g is a polynomial of degree $\le \rho$. We have for all $s \in (\rho, m + 1)$ there exists some C > 0 such that

$$\left|\prod E_m(z/a_k)\right| \ge e^{-C|z|^s}, \qquad z \in \mathbb{C} \setminus \bigcup D(a_k, 1/|a_k|^{m+1}).$$

Our analysis of this gives us the following facts:

Corollary 19.1 (minimum modulus theorem). For every $\varepsilon > 0$, there exists an R > 0 such that

 $|f(z)| \ge e^{-|z|^{\rho+\varepsilon}}, \qquad |z| \ge R, \quad z \in \mathbb{C} \setminus \bigcup D(a_k, 1/|a_k|^{m+1}).$

Corollary 19.2. Let f be entire of finite order $\rho \notin \mathbb{N}$. Then f assumes every complex value infinitely many times.

Proof. For any $w \in \mathbb{C}$, f, f - w are entire of the same order, so it suffices to show that f has infinitely many zeros. If f has only finitely many zeros, then the Hadamard factorization gives $f(z) = p(z)e^{g(z)}$, where p, g are polynomials. The order of such a function is the degree of g, which is an integer.

19.2 Factorization of sine

Example 19.1. Let $f(z) = \sin(\pi z)$. This is entire of order 1, and $f^{-1}(\{0\}) = \mathbb{Z}$. Write $\mathbb{Z} \setminus \{0\}$ as $\{a_k : k = 1, 2, ...\}$ with $a_{2j} = -j$ for $j \ge 1$ and $a_{2j+1} = j+1$, for $j \ge 0$. We can write

$$\sin(\pi z) = e^{g(z)} z \prod_{k=1}^{\infty} E_1(z/a_k)$$
$$= e^{g(z)} z \prod_{k=1}^{\infty} (1 - z/a_k) e^{z/a_k}$$

$$= e^{g(z)} z \prod_{j=1}^{\infty} (1+z/j) e^{-z/j} \prod_{j=0}^{\infty} (1-z/(j+1)) e^{z/(j+1)}$$
$$= e^{g(z)} z \prod_{j=1}^{\infty} (1+z^2/j^2)$$

 e^g is even, and g is a polynomial of degree ≤ 1 . So $g(z) = g(=z) + 2\pi ki$ for some $k \in \mathbb{Z}$. If $g(z) = \alpha z + \beta$, then $\alpha = 0$.

$$= e^{\beta} z \prod_{j=1}^{\infty} (1 + z^2/j^2).$$

To find β , differentiate and take z = 0 to get $\pi = e^{\beta}$. This gives us the classical factorization formula:

$$\sin(\pi z) = \pi z \prod_{j=1}^{\infty} (1 - z^2/j^2).$$

19.3 The Γ -function

Definition 19.1. The Γ -function is defined by

$$\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt, \qquad \operatorname{Re}(a) > 0.$$

The integral converges locally uniformly in $\operatorname{Re}(a) > 0$ and defines a holomorphic function in this region. We have

$$\Gamma(a+1) = \lim_{\substack{\varepsilon \to 0^+ \\ R \to \infty}} \int_{\varepsilon}^{R} e^{-t} t^a \, dt = \lim_{\substack{\varepsilon \to 0^+ \\ R \to \infty}} \left(-t^a e^{-t} \big|_{\varepsilon}^{R} + \int_{\varepsilon}^{R} a t^{a-1} e^{-t} \, dt \right) = a \Gamma(a),$$

when $\operatorname{Re}(a) > 0$. In particular, since $\Gamma(1) = 1$, we have

$$\Gamma(n) = (n-1)!, \qquad n \ge 1.$$

Proposition 19.1. The Γ -function has a meromorphic continuation to \mathbb{C} with simple poles at the nonpositive integers $\{0, -1, -2, ...\}$. The residue at -N is $(-1)^N/N!$.

Proof. For $N \in \mathbb{N}$ with N > 0, write

$$\Gamma(a+N+1) = (a+N)\Gamma(a+N)$$
$$= (a+N)(a+N-1)\Gamma(a+N-1)$$
$$= \cdots$$

$$= (a+N)\cdots(a+1)a\Gamma(a).$$

So we can write

$$\Gamma(a) = \frac{\Gamma(a+N+1)}{(a+N)\cdots(a+1)a}.$$

The right hand side is meromorphic in $\operatorname{Re}(a) > -N-1$. Thus, Γ extends meromorphically to all of \mathbb{C} with the poles $\{0, -1, -2, \dots\}$. Compute

$$\operatorname{Res}(\Gamma, -N) = \lim_{a \to -N} (a+N)\Gamma(a) = \frac{(-1)^N}{N!}$$

Remark 19.1. We have $\Gamma(a+1) = a\Gamma(a)$ for $a \in \mathbb{C} \setminus \{0, -1, -2, ...\}$.

We want to apply Hadamard factorization to Γ , but it is not entire. However, $1/\Gamma$ is entire. We will use the following property of the Γ function:

Proposition 19.2 (reflection identity). For $a \in \mathbb{C} \setminus \mathbb{Z}$,

$$\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin(\pi a)}$$

Proof. It suffices to show the identity when $0 < \operatorname{Re}(a) < 1$. Write

$$\Gamma(1-a) = \int_0^\infty e^{-x} x^{-a} \, dx \stackrel{x=ty}{=} t \int_0^\infty e^{-ty} (ty)^{-a} \, dy.$$

so we may write

$$\begin{split} \Gamma(a)\Gamma(1-a) &= \int_0^\infty e^{-t} t^{a-1} t \left(\int_0^\infty e^{-ty} (ty)^{-a} \, dy \right) \, dt \quad = \iint_{t \ge 0, y \ge 0} e^{-t(1+y)} y^{-a} \, dy \, dt \\ &= \int_0^\infty \frac{y^{-a}}{1+y} \, dy \\ &= \frac{\pi}{\sin(\pi a)}. \end{split}$$

To show the last equality apply the residue theorem to

$$f(z) = \frac{z^{b-a}}{1+z}$$

with 0 < b < 1 and $0 < \arg(z) < 2\pi$, using a "keyhole contour." We get

$$\int_{\gamma} f(z), \ dz \to (1 - e^{2\pi i(b-1)) \int_0^\infty} \frac{x^{b-1}}{1+x} \, dx,$$

where the left hand side equals $2\pi i(-1)^{b-1}$.

Next time, we will show that $1/\Gamma$ is entire of order 1.

20 Uniqueness of the Γ -Function and Hadamard Factorization of $1/\Gamma$

20.1 Uniqueness of the Γ -function

Last time, we defined the Γ -function

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt.$$

We saw that $\Gamma \in \text{Hol}(\text{Re}(z) > 0)$ and extends meromorphically to all of \mathbb{C} with simple poles at $\{0, -1, -2, ...\}$. We also saw that

$$\Gamma(z+1) = z\Gamma(z),$$

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

the latter of which is called the "reflection identity."

The functional equation actually characterizes Γ .

Proposition 20.1. Let $f \in Hol(Re(z) > 0)$ be such that f(z+1) = zf(z), and assume that f is bounded in $1 \leq Re \leq 2$. Then $f(z) = f(1)\Gamma(z)$.

Proof. Consider $\tilde{f}(z) = f(z) - f(1)\Gamma(z)$. We have $\tilde{f}(z+1) = z\tilde{f}(z)$, so \tilde{f} extends meromorphically to \mathbb{C} with simple poles at $\{0, -1, -2, ...\}$, and we can write

$$\tilde{f}(z) = \frac{\tilde{f}(z+N-1)}{z(z+1)\cdots(z+N)}, \quad \text{Re}(z) > -N-1.$$

So $\operatorname{Res}(\tilde{f}, -N) = \lim_{z \to -N} (z + N)\tilde{f}(z) = 0$ for all N. So \tilde{f} is entire. Set $\tilde{u}(z) = \tilde{f}(z) = \tilde{f}(z)\tilde{f}(1-z) \in \operatorname{Hol}(\mathbb{C})$, and we get

$$\tilde{u}(z+1) = \tilde{f}(z+1)\tilde{f}(-z) = z\tilde{f}(z)\frac{1}{-z}\tilde{f}(1-z) = -\tilde{u}(z).$$

So \tilde{u} is antiperiodic and bounded in $1 \leq \operatorname{Re}(z) \leq 2$, so \tilde{u} is constant. So we get $\tilde{u}(z) = \tilde{u}(1) = 0$.

20.2 Hadamard factorization of $1/\Gamma$

Theorem 20.1. The function $1/\Gamma$ is entire of finite order 1 with the Hadamard factorization

$$\frac{1}{\Gamma(z)} = e^{\gamma z} z \prod_{k=1}^{\infty} (1+z/k) e^{-z/k},$$

where $\gamma = \lim_{N \to \infty} \sum_{n=1}^{N} 1/n - \log(N)$ is the Euler constant.

Proof. We have the reflection identity

$$\frac{1}{\Gamma(z)} = \Gamma(1-z) \frac{\sin(\pi z)}{\pi}$$

for all $z \in \mathbb{C}$. The sine term is of order 1. We have

$$\Gamma(z) = \int_0^1 e^{-t} t^{z-1} dt + \int_1^\infty e^{-t} t^{z-1} dt$$

= $\sum_{j=0}^\infty \int_0^1 \frac{(-t)^j}{j!} t^{z-1} dt + \int_1^\infty e^{-t} t^{z-1} dt$
= $\sum_{j=0}^\infty \frac{(-1)^j}{j!(j+z)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\in \operatorname{Hol}(\mathbb{C})}.$

The series defines a meromorphic function in \mathbb{C} with poles at $\{0, -1, -2, ...\}$ since for every compact set $K \subseteq \mathbb{C}$, the functions $(-1)^j/(j!(j+z))$ have no poles in K for $j \ge j_0$ and because $\sum_{j=j_0}^{\infty} (-1)^j/(j!(j+z))$ converges uniformly on K. We get by analytic continuation that

$$\Gamma(1-z) = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(j+1-z)} + \int_1^{\infty} e^{-t} t^{-z}$$

for any z, so

$$\frac{1}{\Gamma(z)} = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(j+1-z)} \frac{\sin(\pi z)}{\pi} + \left(\int_1^{\infty} e^{-t} t^{-z}\right) \frac{\sin(\pi z)}{\pi}.$$

Now

$$\left|\int_{1}^{\infty} e^{-t} t^{-z} dt\right| \leq \int_{1}^{\infty} e^{-t} e^{|\operatorname{Re}(z)|} dt$$

Let $|\operatorname{Re}(z)| \le n < 1 + |\operatorname{Re}(z)|$, where $n \in \mathbb{N}$.

$$\leq n! \\ \leq n^n \\ \leq e^{(1+|z|)\log(1+|z|)},$$

so we get

$$\left| \left(\int_{1}^{\infty} e^{-t} t^{-z} \right) \frac{\sin(\pi z)}{\pi} \right| \le C e^{C(1+|z|)\log(1+|z|)}.$$

If $|\operatorname{Im}(z)| \ge 1$, then

$$\left| \left(\sum_{j=0}^{\infty} \frac{(-1)^j}{j!(j+1-z)} \right) \frac{\sin(\pi z)}{\pi} \right| \le C e^{\pi |z|}.$$

The same estimate holds if $\operatorname{Re}(z) \leq 1/2$. Let $k \in \mathbb{N}_+$ with $k \geq 1$ be such that $k - 1/2 \leq \operatorname{Re}(z) < k + 1/2$. Then

$$\left(\sum_{j=0}^{\infty} \frac{(-1)^j}{j!(j+1-z)}\right) \frac{\sin(\pi z)}{\pi} = \underbrace{\frac{(-1)^k}{k!(k-z)} \frac{\sin(\pi z)}{\pi}}_{O(1)} + O(1)e^{\pi|z|}.$$

It follows that the order of $1/\Gamma$ is ≤ 1 .

To see that the order is ≥ 1 , write

$$\Gamma(z) = \frac{\Gamma(z+N+1)}{z(z+1)\cdots(z+N)}, \qquad \operatorname{Re}(z) > -N-1.$$

and take z = N - 1/2. Then

$$\left|\frac{1}{\Gamma(-N-1/2)}\right| \ge \frac{1}{N!} \ge \frac{1}{C} N^N e^{-N}$$

by Stirling's formula. So the order of $1/\Gamma$ is exactly 1.

By Hadamard's theorem, we get

$$\frac{1}{\Gamma(z)} = e^{\alpha z + \beta} z \prod_{k=1}^{\infty} (1 - z/k) e^{-z/k}.$$

Multiply both sides by $\Gamma(z)$, and let $z \to 0$. We get

$$1 = \lim_{z \to 0} e^{\alpha z + \beta} \Gamma(z) z = e^{\beta},$$

so $\beta = 0$. To compute $\alpha \in \mathbb{R}$, take z = 1 in the expression for $1/\Gamma$:

$$1 = \frac{1}{\Gamma(z)} e^{\alpha} \prod_{k=1}^{\infty} (1 + 1/k) e^{-1/k},$$

 \mathbf{SO}

$$e^{-\alpha} = \lim_{N \to \infty} \exp\left(-\sum_{k=1}^{N} 1/k + \sum_{k=1}^{N} \log(k+1) - \log(k)\right).$$

We get that

$$\alpha = \lim_{N \to \infty} \sum_{k=1}^{N} \frac{1}{K} - \log(N).$$

Next, we will discuss the range of holomorphic functions with Picard's theorems.

Theorem 20.2 (Picard's little theorem). Let $f \in Hol(\mathbb{C})$ be entire and nonconstant. Then the range $f(\mathbb{C})$ omits at most 1 point of \mathbb{C} .

21 Bloch's Theorem and Range of Meromorphic Functions

21.1 Bloch's theorem

We want to prove the following theorem.

Theorem 21.1 (Picard's little theorem). Let $f \in Hol(\mathbb{C})$ be entire and nonconstant. Then the range $f(\mathbb{C})$ omits at most 1 point of \mathbb{C} .

Remark 21.1. It is possible for the range to omit one point. $e^z \neq 0$ for all $z \in \mathbb{C}$.

Remark 21.2. There exists a topological proof of this fact, but it requires the machinery of covering spaces, so we will not visit it at this time.

Proposition 21.1. Let $f \in \text{Hol}(|z| < 1)$ be such that f(0) = 0, f'(0) = 1. If, furthermore, $|f| \le M$, then $f(\{|z| < 1\}) \supseteq D(0, 1/(4M))$.

We will write $D := \{ |z| < 1 \}$.

Remark 21.3. If M = 1, then f(D) = D by Schwarz's lemma.

Proof. Let $w \in \mathbb{C} \setminus f(D)$. Then $w \neq 0$, the function $1 - f/w \neq 0$ in D, and 1 = f/w = 1 at z = 0. Then there exists $g \in \text{Hol}(|z| < 1)$ such that $g^2 = 1 - f/w$ and g(0) = 1. Differentiate and let z = 0 to get 2g(0)g'(0) = -1/w. So g'(0) = -1/(2w), which gives the Taylor expansion

$$g(z) = 1 - \frac{z}{2w} + \cdots$$

Now given $h \in \operatorname{Hol}(|z| < 1)$, we have $h = \sum_{n=0}^{\infty} a_n z^n$ and

$$\frac{1}{2\pi} \int_0^{2\pi} |h(re^{i\varphi})|^2 \, d\varphi = \sum_{n=0}^\infty |a_n|^2 r^{2n}.$$

for r < 1. In particular, apply this property to g. Then

$$\frac{1}{2\pi} \int_0^{2\pi} |h(re^{i\varphi})|^2 \, d\varphi \le \|g\|_\infty^2 \le 1 + \frac{M}{|w|}$$

and

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \ge 1 + \frac{r^2}{4|w|^2}$$

Sending $r \to 1$, we get $1/(4|w|^2) \le M/|w|$. That is, $|w| \ge 1/(4M)$.

Theorem 21.2 (A. Bloch). There exists an absolute constant $\ell > 0$ such that if $f \in$ Hol(|z| < 1) and f'(0) = 1, then the range of f(D) contains an open disc of radius ℓ .

Proof. Assume first that f is holomorphic near $|z| \leq 1$. Let Aut(D) be the set of holomorphic bijections $\varphi: D \to D$; this is the set of automorphisms of D:

$$\varphi \in \operatorname{Aut}(D) \iff \varphi(z) = \lambda \frac{z - \alpha}{1 - \overline{\alpha} z},$$

where $|\lambda| = 1$, and $\alpha \in D$. We have

$$(1 - |z|^2)|\varphi'(z)| = 1 - |\varphi(z)|^2$$

for all $\varphi \in \operatorname{Aut}(D)$. Define $B(f, z) = (1 - |z|^2)|f'(z)|$ when $z \in D$. For any $\varphi \in \operatorname{Aut}(D)$,

$$B(f \circ \varphi, z) = (1 - |z|^2)|f'(\varphi(z))||\varphi'(z)| = (1 - |\varphi(z)|)^2|f'(\varphi(z))| = B(f, \varphi(z))$$

The function $B(f, \cdot)$ is continuous in D, nonnegative, and equal to 0 on ∂D . Let $a \in D$ be such that B achieves its maximum at a.

Assume first that a = 0. Then $|f'(z)| \le 1/(1-|z|^2)$ for |z| < 1 for |z| < 1. We get

$$|f(z) - f(0)| = \left| \int_0^1 \frac{d}{dt} f(tz) \, dt \right| \le \frac{|z|}{1 - |z|^2}, \qquad |z| < 1.$$

If $|z| \leq R < 1$, we get

$$|f(z) - f(0)| \le \frac{R}{1 - R^2} = M.$$

Apply the previous proposition to (f(Rz) - f(0))/R, which is a holomorphic function bounded by M/R. Then f(D) contains an open disc of radius $R\frac{1}{4(M/R)} = R^2/(4M) = R(1-R)^2/4$. This is true for any 0 < R < 1, so the optimal choice of R is $\sqrt{3}/3$. The corresponding radius is $\sqrt{3}/18$.

In general, we may have $a \neq 0$. Let $\psi \in \operatorname{Aut}(D)$ be such that $\psi(0) = a$. Consider $g = f \circ \psi$. Then

$$B(g, z) = B(f, \psi(z)) \le B(f, a) = B(g, 0),$$

by pulling back using ψ and the conformal invariance of B. Note that the right hand side equals |g'(0)|, so $|g'(0)| \ge 1$. The previous discussion can be applied to the function (g(Rz) - g(0))/(Rg'(0)). So the g(D) contains an open disc of radius $\sqrt{3}18|g'(0)| \ge \sqrt{3}18$. Since g(D) = f(D), we get the result, if f is holomorphic near $|z| \le 1$.

In general, let $f_{\rho}(z) = (1/\rho)f(\rho z)$, where $0 < \rho < 1$. Then $f_{\rho}(D)$ contains a fixed disc. Then $f(D) \supseteq \rho f_{\rho}(D)$, which contains a disc of radius $\rho \sqrt{3}/18$. Pick any such ρ to get the theorem.

21.2 Range of meromorphic functions

We will use Bloch's theorem to prove Picard's little theorem next time. Here is a corollary of Picard's theorem.

Corollary 21.1. Let f be meromorphic in \mathbb{C} and nonconstant. Then f assumes all values in \mathbb{C} with at most 2 exceptions.

Proof. Assume f does not take on the distinct values $a, b, c \in \mathbb{C}$. Let g(z) = 1/(f(z) - c). This is holomorphic away form the poles of f. The singularities at the poles of f are removable for g, so g can be extended to an entire holomorphic function. Its range omits 2 values: 1/(a-c) and 1/(b-c). So g is constant by Picard's little theorem.

Example 21.1. Let

$$f(z) = \frac{1}{e^z + 1}.$$

This function omits the values 0, 1.

Example 21.2. Suppose we try to solve $f^n + g^n = 1$ with $n \ge 3$. This equation has no nonconstant solution by this corollary to Picard's little theorem.

22 Picard's Little Theorem and Schottky's Theorem

22.1 Picard's little theorem

Last time, we proved Bloch's theorem:

Theorem 22.1 (A. Bloch). There exists an absolute constant $\ell > 0$ such that if $f \in Hol(|z| < 1)$ and f'(0) = 1, then the range of f(D) contains an open disc of radius ℓ .

We can now prove prove Picard's little theorem.⁴

Theorem 22.2 (Picard's little theorem). Let $f \in Hol(\mathbb{C})$ be entire and nonconstant. Then the range $f(\mathbb{C})$ omits at most 1 point of \mathbb{C} .

Proof. Let $f \in Hol(\mathbb{C})$, and assume that f omits 2 distinct values $a, b \in \mathbb{C}$. By composing with an affine transformation, we may assume that a = 0, b = 1. We will show that f is constant.

We claim that there exists $g \in \operatorname{Hol}(\mathbb{C})$ such that $f(z) = -\exp(i\pi \cosh(2g(z)))$. The function $f \neq 0$ in \mathbb{C} , so there exists $F \in \operatorname{Hol}(\mathbb{C})$ such that $e^{2\pi i F} = f$. Moreover, F does not assume integer values, so we can define $\sqrt{F} - \sqrt{F-1} \in \operatorname{Hol}(\mathbb{C})$ which is also nonvanishing. Define g as a holomorphic branch of $\log(\sqrt{F} - \sqrt{F-1})$. Then

$$e^{g} = \sqrt{F} - \sqrt{F-1},$$
$$e^{-g} = \sqrt{F} + \sqrt{F-1}$$

 \mathbf{SO}

$$\cosh(2g) + 1 = 2\cos^2(g) = 2F,$$

which proves the claim.

Let

$$E = \{\pm \underbrace{\log(\sqrt{n} + \sqrt{n-1})}_{=\lambda_n} + im\pi/2 : m \in \mathbb{Z}, n \ge 1\}.$$

The points in E form the vertices of a grid of rectangles in \mathbb{C} . We claim that $E \cap g(\mathbb{C}) = \emptyset$. If $g(z) = \pm \log(\sqrt{n} + \sqrt{n-1}) + im\pi/2$, then

$$2\cosh(2g(z)) = e^{im\pi} \left((\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} - \sqrt{n-1})^2 \right)^2$$

= (-1)^m2(2n-1),

so f(z) = 1.

We now claim that g is constant. We have that the height of a rectangle R_n in our grid is $\pi/2$, and the width of R_n is $\lambda_{n+1} - \lambda_n = \log\left(\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n}+\sqrt{n-1}}\right) \leq C$ for $n \geq 1$. So there exists some $R_0 > 0$ such that each open disc of radius R_0 meets E. If $g'(a) \neq 0$ for some a, then apply Bloch's theorem to the function g(a + Rz)/Rg'(a) for |z| < 1, R > 0. The range contains a disc of fixed radius $\ell > 0$ for each R > 0, so $g(\mathbb{C})$ contains a disc of radius $R\ell|g'(a)| \leq R_0$; letting $R \to \infty$, we get a contradiction. \Box

⁴This proof is not Picard's original proof. Bloch's theorem came after the original proof.

22.2 Schottky's theorem

Here is a consequence of Bloch's theorem. It will allow us to prove Picard's great theorem.

Theorem 22.3 (Schottky). For each $0 < \alpha < \infty$ and $0 \leq \beta \leq 1$, there exists a constant $M(\alpha, \beta) > 0$ such that if $f \in Hol(D)$ omits the values 0, 1 and $|f(0)| \leq \alpha$, then $|f(z)| \leq M(\alpha, \beta)$ for all $|z| \leq \beta$.

Proof. We may assume $\alpha \geq 2$. Assume that $1/2 \leq |f(0)| \leq \alpha$. Following the proof of Picard's little theorem, let $F \in \operatorname{Hol}(D)$ be such that $e^{2\pi i F} = f$ in D. Chose the branch of f so that $\operatorname{Re}(F(0)) \in [0,1]$. Then $e^{-2\pi \operatorname{Im}(F(0))} = |f(0)|$, so $|\operatorname{Im}(F(0))| \leq (1/2\pi) \log(\alpha)$. We will call $C(\alpha)$ any constant that depends only on α . So $|F(0)| \leq C(\alpha)$. Next, $\sqrt{F} - \sqrt{F-1} \in \operatorname{Hol}(D)$, and $|\sqrt{F(0)} - \sqrt{F(0)-1}| \leq |F(0)|^{1/2} + (|F(0)|+1)^{1/2} \leq C(\alpha)$. Finally, let $g \in \operatorname{Hol}(D)$ be such that $e^g = \sqrt{F} - \sqrt{F-1}$. Choose the branch so that $0 \leq \operatorname{Im}(g(0)) < 2\pi$. We can then control $|\operatorname{Re}(g(0))|$. We get a constant $C(\alpha) > 0$ such that if $f(z) = \exp(i\pi \cosh(2g(z)))$, then $|g(0)| \leq C(\alpha)$ if $1/2 \leq |f(0)| \leq \alpha$.

Recall that $g(D) \cap E = \emptyset$, where E is as in the proof of Picard's little theorem. Then there is a number R_0 such that g(D) contains no disc. Let $|z| \le \beta < 1$, and let

$$\varphi(\zeta) = \frac{g(z + (1 - \beta)\zeta)}{(1 - \beta)g'(z)}$$

where z is such that $g'(z) \neq 0$. This is holomorphic in $|\zeta| < 1$, and $\varphi'(0) = 1$, so $\varphi(D)$ contains a disc of radius ℓ by Bloch's theorem. So g(D) contains a disc of radius $|ell(1 - \beta)|g'(z)|$. So $|g'(z)| \leq R_0/(\ell(1 - \beta))$ for $|z| \leq \beta$. By integration, we get uniform control on the function g.

We will finish the proof next time.

23 The Montel-Caratheodory Theorem and Corollaries of Picard's Great Theorem

23.1 Proof of Schottky's theorem, continued

Last time, we were proving Schottky's theorem. Let's finish the proof.

Theorem 23.1 (Schottky). For each $0 < \alpha < \infty$ and $0 \leq \beta < 1$, there exists a constant $M(\alpha, \beta) > 0$ such that if $f \in \operatorname{Hol}(D)$ omits the values 0, 1 and $|f(0)| \leq \alpha$, then $|f(z)| \leq M(\alpha, \beta)$ for all $|z| \leq \beta$.

Proof. It suffices to show this for when $\alpha \geq 2$.

Case 1: $1/2 \leq |f(0)| \leq \alpha$: We have shown that we can write $f = -\exp(i\pi \cosh(2g(z)))$ with $g \in \operatorname{Hol}(D), |g(0)| \leq C(\alpha)$, and $|g'(z)| \leq C_0/(1-\beta)$ for $|z| \leq \beta < 1$, for some absolute constant C_0 . Writing $g(z) = g(0) = \int_0^1 zg'(tz) dt$, we get

$$|g(z)| \le C(\alpha) + \frac{C_0|z|}{1-\beta} \le C(\alpha,\beta), \qquad |z| \le \beta < 1.$$

We get

$$|f(z)| \le e^{\pi e^{2|g(z)|}} \le M(\alpha, \beta).$$

Case 2: 0 < |f(0)| < 1/2: Apply case 1 to the function 1 - f. Then $1/2 \le |1 - f(0)| \le 2$. So, by case 1, $|1 - f(z)| \le M(2, \beta)$ for $|z| \le \beta < 1$.

23.2 The Montel-Caratheodory theorem

Definition 23.1. Let $\Omega \subseteq \mathbb{C}$ be open, and let $\mathcal{F} \subseteq \text{Hol}(\Omega)$. We say \mathcal{F} is **normal** if each sequence in \mathcal{F} has a subsequence which either converges locally uniformly in $\text{Hol}(\Omega)$ or tends to ∞ uniformly on each compact set.

Theorem 23.2 (Montel-Caratheodory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $\mathcal{F} \subseteq$ Hol (Ω) be such that for any $f \in \mathcal{F}$, $f(\Omega)$ omits the values 0,1. Then \mathcal{F} is normal.

Proof. Let (f_n) be a sequence in \mathcal{F} . It suffices to show that for any open disc D with $\overline{D} \subseteq \Omega$, there exists a subsequence of (f_n) which converges uniformly on D or tends to ∞ unformly on D. Let $(D_{\nu})_{\nu=1}^{\infty}$ be such that $\overline{D}_{\nu} \subseteq \Omega$, $\Omega = \bigcup_{\nu=1}^{\infty} D_{\nu}$. Passing to a suitable diagonal subsequence (g_n) of (f_n) , we get that for all ν , (g_n) converges uniformly on D_{ν} or tends to ∞ uniformly on D_{ν} . Let Ω_1 be the set of $z \in \Omega$ such that (g_n) converges uniformly in a neighborhood of z, and let Ω_2 be the set of $z \in \Omega$ such that (g_n) tends to ∞ uniformly in a neighborhood of z. Then Ω_1, Ω_2 are open and disjoint, and $\Omega = \Omega_1 \cup \Omega_2$, so the connectedness of Ω gives $\Omega = \Omega_1$ or $\Omega = \Omega_2$. In the first case, (g_n) converges locally uniformly in Ω , and in the second case, (g_n) tends to ∞ locally uniformly.

Let $D \subseteq \Omega$ be an open disc, and let us show that (f_n) has a subsequence which converges in Hol(D) or tends to ∞ locally uniformly in D. Let $D = D(z_0, R)$. We split into cases:

- 1. $|f_n(z_0)| \leq 1$ for infinitely many values of n: By Schottky's theorem, we get a subsequence (f_{n_j}) such that for any compact $K \subseteq D$, $|f_{n_j}(z)| \leq C_K$ for $z \in K$, $j = 1, 2, \ldots$. By Montel's theorem, we get a locally uniformly convergent subsequence.
- 2. $1 < |f_n(z_0)|$ for infinitely many values of n: Then apply Schottkey's theorem and then Montel's theorem to $1/f_n(z) \in \operatorname{Hol}(D)$. We get a subsequence $1/f_{n_k} \to g \in \operatorname{Hol}(D)$ locally uniformly. We have that g is either nonvanishing (then $f_{n_k} \to 1/g$ locally uniformly) or $g \equiv 0$ (then $f_{n_k} \to \infty$ locally uniformly).

23.3 Corollaries of Picard's great theorem

Recall the Casorati-Weierstrass theorem.

Theorem 23.3 (Casorati-Weierstrass). Let $a \in \mathbb{C}$, and let $f \in \text{Hol}(\{0 < |z - a| < \delta\})$ have an essential singularity at a. Then the range $f(\{0 < |z - a| < \delta\})$ is dense in \mathbb{C} .

Picard's great theorem is a generalization of this.

Theorem 23.4. Let $a \in \mathbb{C}$, and let $f \in \text{Hol}(\{0 < |z-a| < \delta\})$ have an essential singularity at a. There exists $w \in \mathbb{C}$ be such that the range $f(\{0 < |z-a| < r\})$ contains $\mathbb{C} \setminus \{w\}$ for all $0 < r \le \delta$.

Remark 23.1. The function $f(z) = e^{1/z} \neq 0$ has an essential singularity at 0.

We will prove the result next time. Here are some corollaries.

Corollary 23.1. Let $f \in Hol(\mathbb{C})$ not be a polynomial. Then for all R > 0, f assumes all values in \mathbb{C} with at most 1 exception in |z| > R.

Proof. Apply Picard's great theorem to f(1/z).

Corollary 23.2. Let f be meromorphic in \mathbb{C} , and suppose f is not a rational function. Then for all R > 0, f assumes all values in \mathbb{C} with at most 2 exceptions in |z| > R.

Proof. Assume that f omits 3 distinct values a, b, c in |z| > R. Let g(z) = 1/(f(z) - c). Then g removable singularities, so it extends to an entire function. Moreover, g is not a polynomial. g omits the values 1/(a-c) and 1/(b-c) in |z| > R, which contradicts the previous corollary.

24 Picard's Great Theorem and Fatou's Theorem

24.1 Picard's Great Theorem

Theorem 24.1 (Picard's great theorem). Let $a \in \mathbb{C}$, and let $f \in \text{Hol}(\{0 < |z - a| < \delta\})$ have an essential singularity at a. There exists $w \in \mathbb{C}$ be such that the range $f(\{0 < |z - a| < r\})$ contains $\mathbb{C} \setminus \{w\}$ for all $0 < r \le \delta$.

Proof. We may assume that a = 0. Assume that there exists some $\varepsilon > 0$ such that $f \in \text{Hol}(0 < |z| < \varepsilon)$ and $f(0 < |z| < \varepsilon)$ omits 2 distinct values $a, b \in \mathbb{C}$. Let $f_n(z) = f(z/n) \in \text{Hol}(0 < |z| < \varepsilon)$, so $a, b \notin \text{Ran}(f_n)$ for all $n \ge 1$. Apply the Montel-Caratheodory theorem to (f_n) to get a subsequence (f_{n_ν}) such that either (f_{n_ν}) converges locally uniformly in $\text{Hol}(0 < |z| < \varepsilon)$ or $f_n \to \infty$ locally uniformly.

Case 1: Assume that $(f_{n_{\nu}})$ converges locally uniformly in Hol $(0 < |z| < \varepsilon)$. Let $K = \{z : |z| = \varepsilon/2\}$. Then $|f_{n_{\nu}}(z)| \leq C$ for all $z \in K$, $\nu = 1, 2, \ldots$ In other words, $|f(z)| \leq C$ for $|z| = \varepsilon/(2n_{\nu}) \to 0$. By the maximum principle, f is bounded in a punctured neighborhood of 0, so 0 is a removable singularity for f. This is a contradiction.

Case 2: Assume that $f_{n_{\nu}} \to \infty$ locally uniformly. Let $g_n(z) = 1/(f_n(z) - a)$. Then $g_{n_{\nu}}$ is a sequence of holomorphic functions with $g_{n_{\nu}} \to 0$ locally uniformly. Arguing as in Case 1, we get: g(z) = 1/(f(z) - a) has a removable singularity at 0 with g(0) = 0. So f = a + 1/g(z) has a pole at 0, which is impossible.

24.2 Boundary values of harmonic functions in the disc

Theorem 24.2 (Fatou). Let u be harmonic in D and bounded. Then the radial limits $\lim_{r\to 1^-} u(rz)$ exist for a.e. $z \in \partial D$ (with respect to 1-dimensional) Lebesgue measure on the circle. If $u = f \in \operatorname{Hol}(D)$ and $f(z) = \lim_{r\to 1^-} f(rz)$ vanishes on a set of positive measure (on the circle), then $f \equiv 0$.

Proof. We may assume that u is real-valued. When $0 \leq r < 1$, let $\mu_r : L^1(\partial D) \to \mathbb{C}$ be the linear, continuous functional given by

$$\mu_r(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{i\varphi}) f(e^{i\varphi}) \, d\varphi.$$

We have $|\mu_r(f)| \leq M ||f||_{L^1}$. Then

$$\|\mu_r\|_{(L^1)^*} = \sup_{0 \neq f \in L^1} \frac{|\mu_r(f)|}{\|f\|_{L^1}} \le M, \qquad 0 \le r < 1.$$

We can apply the Banach-Alaoglu theorem⁵: let B be a separable Banach space, and let (Λ_{α}) be a sequence of linear, continuous functionals $B \to \mathbb{C}$ such that $\|\Lambda_{\alpha}\|_{B^*} \leq C$ for

⁵The idea of the proof is to let take a countable dense subset (u_{ν}) of B and use diagonalization to find (Λ_{α_j}) such that $\lim_{j\to\infty} \Lambda_{\alpha_j}(u_{\nu})$. Then extend to any $u \in B$ using $\|\Lambda_{\alpha}\|_{B^*} \leq C$.

all α . Then there exists a subsequence (Λ_{α_j}) such that for all $u \in B$, $(\Lambda_{\alpha_j}(u))$ converges in \mathbb{C} . In our case, $B = L^1$, so there exists a sequence $r_k \to 1$ such that for every $f \in L^1$, $\lim_{r_k \to 1} \mu_{r_k}(f)$ exists. Define $\mu(f)$ as this limit. We have $\mu : L^1 \to \mathbb{C}$ is linear, and $\|\mu\|_{(L^1)^*} \leq M$. Thus, $\mu \in (L^1)^*$, the space of linear, continuous functionals on L^1 . This space is $L^{\infty}(D)$; that is, there is a $g \in L^{\infty}(D)$ such that

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}f(e^{i\varphi})g(e^{i\varphi})\,d\varphi.$$

We get

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\varphi} dr (r_k e^{i\varphi}) f(e^{i\varphi}) \xrightarrow{k \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{i\varphi}) f(e^{i\varphi}) d\varphi.$$

Now $z \mapsto u(r_k z)$ is harmonic in a neighborhood of $|z| \leq 1$, so

$$u(r_k z) = \int P(z, e^{i\varphi}) u(r_k e^{i\varphi}) \, d\varphi \qquad \forall k, |z| < 1$$

Let $k \to \infty$. $P(z, e^{i\varphi}) \in L^1(\partial D)$, so

$$u(z) = \int_{-\pi}^{\pi} P(z, e^{i\varphi}) g(e^{i\varphi}) \, d\varphi.$$

In other words, u is harmonic and bounded iff u equals the Poisson integral of g for some $g \in L^{\infty}$. Next, we will show that $\lim_{r \to 1} u(rz) = g(z)$ for a.e. z.

We will finish the proof next time.

25 Fatou's Theorem and the Riesz-Herglotz Theorem

25.1 Fatou's theorem, continued

Last time, we were in the middle of proving Fatou's theorem.

Theorem 25.1 (Fatou). Let u be harmonic in D and bounded. Then the radial limits $\lim_{r\to 1^-} u(rz)$ exist for a.e. $z \in \partial D$ (with respect to 1-dimensional) Lebesgue measure on the circle. If $u = f \in \operatorname{Hol}(D)$ and $f(z) = \lim_{r\to 1^-} f(rz)$ vanishes on a set of positive measure (on the circle), then $f \equiv 0$.

Proof. We have shown that there exists $g \in L^{\infty}(\partial D)$ such that

$$u = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(z, e^{i\varphi}) g(e^{i\varphi}) \, d\varphi.$$

Let $e^{i\alpha} \in \partial D$ be a Lebesgue point of g:

$$\frac{1}{2\pi\rho} \int_{\alpha-\rho}^{\alpha+\rho} |g(e^{i\varphi}) - g(e^{i\alpha})| \, d\varphi \to 0.$$

We claim that the radial limit $\lim_{r\to 1} u(re^{i\alpha})$ exists an equals $g(e^{i\alpha})$. This will establish the theorem, as a.e. point in ∂D is a Lebesgue point of g. We can assume that $\alpha = 0$ and that $g(e^{i\alpha}) = 0$ (otherwise consider $u(e^{i\alpha z}) - g(e^{i\alpha})$). Thus,

$$\frac{1}{2\pi\rho}\int_{-\rho}^{\rho}|g(e^{i\varphi})|\,d\varphi\to 0,$$

and we want to show that $u(x) \to 0$ as $x \to 1^-$ along \mathbb{R} .

Plugging in the formula for the Poisson kernel,

$$u(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - x^2}{|x - e^{i\varphi}|^2} g(e^{i\varphi}) \, d\varphi.$$

The contribution to this integral coming from $\int_{\pi/2 \le |\varphi| \le \pi} \to 0$, as $P(x, e^{i\varphi}) \to 0$ uniformly in φ . Estimate the contribution from $|\varphi| \le \pi/2$: Writing $\delta = 1 - x$,

$$P(x, e^{i\varphi}) = \frac{1 - (1 - \delta)^2}{|x - e^{i\varphi}|^2} = \frac{2\delta - \delta^2}{(x - \cos(\varphi))^2 + \sin^2(\varphi)} \le \frac{2\delta}{\sin^2(\varphi)} \le \frac{2\delta}{\varphi^2}$$

We get

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1-x^2}{|x-e^{i\varphi}|^2} |g(e^{i\varphi})| \, d\varphi \le \int_{A\delta \le |\varphi| \le \pi/2} + \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} |g(e^{i\varphi})| \, d\varphi \le \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{A\delta \le |\varphi| \le \pi/2} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{A\delta \le |\varphi| \le \pi/2} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le \pi/2} \int_{|\varphi| \le A\delta} \int_{A\delta \le |\varphi| \le \pi/2} \int_{|\varphi| \le \pi/2} \int_{|\varphi| \le \delta} \int_{|\varphi| \le \pi/2} \int_{|\varphi| <\pi/2} \int_{|\varphi|$$

$$\begin{split} &\leq \int_{A\delta \leq |\varphi| \leq \pi/2} \frac{2\delta}{\varphi^2} |g(e^{i\varphi})| \, d\varphi + \int_{|\varphi| \leq A\delta} \frac{2\delta - \delta^2}{|x - e^{i\varphi}|^2} |g(e^{i\varphi})| \, d\varphi \\ &\leq \int_{A\delta \leq |\varphi| \leq \pi/2} \frac{2\delta}{\varphi^2} |g(e^{i\varphi})| \, d\varphi + \int_{|\varphi| \leq A\delta} \frac{2\delta}{\delta^2} |g(e^{i\varphi})| \, d\varphi \\ &\leq \frac{C\delta}{A\delta} + \frac{2}{\delta} \int_{|\varphi| \leq A\delta} |g(e^{i\varphi})| \, d\varphi. \end{split}$$

Given $\varepsilon > 0$, take A large so that $C/A \leq \varepsilon$ for all $0 < \delta \leq \delta_0(\varepsilon)$. For δ small enough, $\int_{|\varphi| \leq \pi/2} P(x, e^{i\varphi}) |g(e^{i\varphi})| d\varphi \leq 7\varepsilon$. Thus, $u(x) \to 0$ as $x \to 1^-$. Thus, for a.e. $z \in \partial D$, $\lim_{r \to 1} u(rz)$ exists and equals g(z).

For the latter part of the theorem, assume now that $f \in \operatorname{Hol}(D)$ is bounded. Then for a.e. $z \in \partial D$, $\lim_{r \to 1} f(rz) =: f(z) \in L^{\infty}(\partial D)$. We claim that if f(z) = 0 on a set of positive measure in ∂D , then $f(z) \equiv 0$ in |z| < 1. The function $\log |f|$ is subharmonic in D, so

$$r\mapsto \frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(re^{i\varphi})|\,d\varphi$$

is an increasing function. For any 0 < r < 1, using Fatou's lemma,

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |f(re^{i\varphi})| \, d\varphi &\leq \limsup_{r \to 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |f(re^{i\varphi})| \, d\varphi \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |f(e^{i\varphi})| \, d\varphi. \end{split}$$

If $f \neq 0$, we can conclude that the integral $> -\infty$. So $\log |f| \in L^1(\partial D)$, so $\{f = 0\}$ is a Lebesgue null set in ∂D .

25.2 Representing harmonic functions by measures

We have been looking at functions u such that

$$u(z) = \frac{1}{2\pi} \int_{|w|=1} P(z, w) g(q) \, |dw|$$

for some $g \in L^{\infty}$. Let's try to replace $g \in L^{\infty}$ by $g \in L^1$ or by a (Borel, regular, Radon) measure $d\mu$ on ∂D .

Theorem 25.2 (F. Riesz-Herglotz). Let μ be a measure on ∂D , and let

$$u = \int_{|w|=1} P(z, w) d\mu(w), \qquad |z| < 1.$$

Then u is harmonic in D, and the function $r \mapsto \int_{|z|=1} |u(rz)| |dz|$ is bounded on [0,1). If $u_r(z) = u(rz)$, then $u_r \xrightarrow{r \to 1} \mu$ in the following weak sense: for any $\varphi \in C(\partial D)$,

$$\frac{1}{2\pi} \int_{|z|=1} u_r(z)\varphi(z) |dz| \xrightarrow{r \text{ tol}} \int_{|z|=1} \varphi(z) \, d\mu(z).$$

Conversely, let u be harmonic in D such that $\int_{|z|=1} |u(rz)| |dz| \leq C$ for all $0 \leq r \leq 1$. Then there exists a unique measure μ on ∂D such that

$$u(z) = \int_{|w|=1} P(z, w) \, d\mu(w) \qquad |z| < 1.$$

Moreover, $u_r \rightarrow \mu$ in the same weak sense.

Example 25.1. Let $u \ge 0$ be harmonic. Then the theorem applies, so

$$u(z) = \int_{|w|=1}^{z} P(z, w) \, d\mu(w),$$

where μ is a positive measure.

26 Harmonic measures

26.1 The Riesz-Herglotz theorem

Theorem 26.1 (F. Riesz-Herglotz). u is harmonic in D and

$$\sup_{0 \le r < 1} \int_{|z|=1} |u(rz)| \, |dz| \le C < \infty$$

if and only if there exists a measure μ on ∂D such that

$$u(z) = \int_{|w|=1} P(z,w) \, d\mu(w).$$

Proof. Let $u(z) = \int_{|w|=1} P(z, w) d\mu(w)$ for |z| < 1. Then u is harmonic in D, and

$$\begin{split} u(re^{it}) &= \int_{[-\pi,\pi)} P(re^{it}, e^{i\varphi}) d\mu(\varphi) \\ &= \int_{[-\pi,\pi)} \frac{1 - r^2}{1 + t^2 - 2r\cos(t - \varphi)} d\mu(\varphi) \\ &= \int_{[-\pi,\pi)} P(re^{i\varphi}, e^{it}) d\mu(\varphi). \end{split}$$

 So

$$\begin{split} \int_{-\pi}^{\pi} |u(re^{it})| \, dt &\leq \int_{-\pi}^{\pi} \left(\int_{[-\pi,\pi)} P(re^{i\varphi}, e^{it}) \, |d\mu(\varphi)| \, dt \right) \\ &= \int_{[-\pi,\pi)} \underbrace{\left(\int_{-\pi}^{\pi} P(re^{i\varphi}, e^{it}) \, dt \right)}_{=2\pi} \, |d\mu(\varphi)| \\ &\leq 2\pi \int_{[-\pi,\pi)} |d\mu(\varphi)|. \end{split}$$

Check also that if $u_r(z) = u(rz)$, then for all $\psi \in C(\partial D)$,

$$\frac{1}{2\pi} \int_{|z|=1} u_r(z)\psi(z) \, |dz| \to \int_{|z|=1} \psi(z) \, d\mu(z).$$

The left hand side is

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\int_{[-\pi,\pi)} P(re^{it}, e^{i\varphi}) \, d\mu(\varphi) \right) \psi(e^{it}) \, dt = \int_{-\pi}^{\pi} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} P(re^{it}, e^{i\varphi}) \psi(e^{it}) \, dt \right) \, d\mu(\varphi),$$

where the part in the parentheses on the right is the harmonic extension of $\psi \in C(\overline{D})$, so it converges to $\psi(e^{i\varphi})$ uniformly in φ as $r \to 1$. So this goes to $\int_{[-\pi,\pi)} \psi(e^{i\varphi}) d\mu(\varphi)$.

Conversely, let u be harmonic in D such that

$$||u_r|||_{L^1(\partial D)} = \int_{-\pi}^{\pi} |u(rz)| \, |dz| \le C, \qquad 0 \le r < 1.$$

Here $L^1(\partial D) \subseteq \mathcal{M}(\partial D)$, the space of bounded finite Borel measures on ∂D . The space $\mathcal{M}(\partial D)$ is the dual of $C(\partial D)$. By Banach-Alaoglu, there exists a sequence $r_j \to 1$ and a measure $\mu \in \mathcal{M}(\partial D)$ such that $u_{r_j} \to \mu$ weakly: for any $\psi \in C(\partial D)$,

$$\frac{1}{2\pi} \int_{|z|=1} u_{r_j}(z)\psi(z)|dz| \to \int \psi \, d\mu.$$

Finally, for all j, $u_{r_i}(z)$ is harmonic near \overline{D} , so

$$u(r_j z) = \frac{1}{2\pi} \int_{|w|=1} P(z, w) u(r_j w) \, dz.$$

Letting $j \to \infty$, we get

$$u(z) = \int P(z, w) \, d\mu(w). \qquad \Box$$

Remark 26.1. The measure μ is unique. Let $h^1 = \{u \in H(D) : \int |u(rz)| |dz| \leq C \forall r\}$. The theorem says that the **Poisson operator** $\mathcal{P} : \mathcal{M}(\partial D) \to h^1$ is a homeomorphism.

Corollary 26.1. Let $f \in Hol(D)$ with $Re(f) \ge 0$. Then there exists a measure $\mu \ge 0$ on ∂D and a constant $c \in \mathbb{R}$ such that

$$f(z) = ic + \int_{|w|=1} \frac{w+z}{w-z} d\mu(w).$$

Proof. By the Riesz-Herglotz theorem applied to $\operatorname{Re}(f) \geq 0$, we write

$$\operatorname{Re}(f(z)) = \int_{|w|=1} \operatorname{Re}\left(\frac{w+z}{w-z}\right) d\mu(w).$$

So if

$$g(z) = \int_{|w|=1} \frac{w+z}{w-z} \, d\mu(w)$$

then $g \in Hol(D)$, and Re(f) = Re(f). The result follows.

26.2 Boundary behavior of harmonic measures

We would like to understand the boundary behavior of $u \in h^1$.

Theorem 26.2. Let $u \in h^1$, and consider the Lebesgue decomposition of the representing measure μ : $d\mu = f/(2\pi) |dz| + d\lambda$, where $f \in L^1(\partial D)$, and $d\lambda$ is singular with respect to |dz|.

- 1. Then for a.e. $z \in \partial D$, the radial limit $\lim_{r \to 1} u(rz)$ exists and equals f(z).
- 2. If $d\mu = f/(2\pi)|dz|$ with $f \in L^1$, then $u_r \to f$ in $L^1(\partial D)$.

We will prove this next time. Here is an application:

Example 26.1 (Problem 12, Analysis qual, Spring 2016). Let u be real, harmonic in D, $u \leq M$, and assume that $\lim_{r\to 1} u(rz) \leq 0$ for a.e. $z \in \partial D$. Show that $u \leq 0$.

Consider $v = M - u \ge 0$, which is harmonic. There exists a measure $\mu \ge 0$ such $v(z) = \int_{|w|=1} P(z,w) d\mu(w)$. Writing $d\mu = f/(2\pi)|dz| + d\lambda$, where $f \ge 0$ and $\lambda \ge 0$. By the theorem, $f(z) = \lim_{r \to 1} v(rz) = \lim_{r \to 1} (M - u(rz)) \ge M$. We get

$$v(z) = \underbrace{\int P(z,w) \frac{f}{2\pi} |dw|}_{\geq M} + \underbrace{\int P(z,w) \, d\lambda(w)}_{\geq 0}.$$

So $v \ge M$ in D, and we get $u \le 0$ in D.
27 Radial Limits of Harmonic Functions on the Disc

27.1 Radial limits of harmonic functions on the disc

Let $\mathcal{P} : \mathcal{M}(\partial D) \to h^1$, the set of all harmonic functions u in D such that $\int_{|z|=1} |u(rz)| |dz| \leq C$ for all r, send $\mu \mapsto \mathcal{P}\mu = u$. We showed last time that this is a homeomorphism.

Theorem 27.1. Let $u \in h^1$, and consider the Lebesgue decomposition of the representing measure μ : $d\mu = f/(2\pi) |dz| + d\lambda$, where $f \in L^1(\partial D)$, and $d\lambda$ is singular with respect to |dz|.

- 1. Then for a.e. $z \in \partial D$, the radial limit $\lim_{r \to 1} u(rz)$ exists and equals f(z).
- 2. If $d\mu = f/(2\pi)|dz|$, is absolutely continuous and $u(z) = \int_{|w|=1} P(z,w) d\mu(w)$, then $u_r \to f$ in $L^1(\partial D)$.

Proof. Write

$$u(z) = \int_{|w|=1} P(z, w) \, d\mu(w) = \int_{[-\pi, \pi)} P(z, r^{i\varphi}) \, d\mu(\varphi).$$

Recall that for a.e. $\varphi \in \mathbb{R}$, we have by the Lebesgue differentiation theorem that

$$\frac{1}{\rho} \int_{\varphi-\rho}^{\varphi+\rho} |f(e^{it}) - f(e^{i\varphi})| dt \xrightarrow{\rho \to 0} 0,$$
$$\frac{1}{\rho} \int_{[\varphi-\rho,\varphi+\rho]} |d\lambda(t)| \to 0.$$

We claim that if $\varphi \in \mathbb{R}$ is as above, then $\lim_{r \to 1} u(re^{i\varphi})$ exists and equals $f(e^{i\varphi})$. We may assume that $\varphi = 0$ and f(1) = 0. Then

$$\frac{1}{\rho} \int_{-\rho}^{\rho} |f(e^{it})| \, dt \to 0, \qquad \frac{1}{\rho} \int_{[-\rho,\rho]} |d\lambda(t)| \to 0.$$

It suffices to show that if |nu| is a measure such that $(1/\rho) \int_{[-\rho,\rho]} |d\nu(t)| \to 0$ as $\rho \to 0$, then

$$\int P(x, e^{it}) \, d\nu(t) \xrightarrow{x \to 1^-} 0, \qquad x \in \mathbb{R}.$$

Here,

$$\int_{\pi/2 \le |t| \le \pi} P(x, e^{it}) \, d\nu(t)$$

since $P(x, e^{it}) \to 0$ uniformly. Write $\delta = 1 - x$, and consider

$$\int_{|t| \le pi/2} P(x, e^{it}) \, d\nu(t) = \int_{\sqrt{c\delta} \le |t| \le \pi/2} P(x, e^{it}) \, d\nu(t) + \int_{|t| \le \sqrt{c\delta}} P(x, e^{it}) \, d\nu(t).$$

Here, C > 0 is a large constant to be chosen later. When $\sqrt{C\delta} \le |t| \le |\pi/2|$,

$$P(x, e^{it}) = \frac{1 - x^2}{|x - e^{it}|^2} = \frac{2\delta - \delta^2}{(x - \cos(t))2 + \sin^2(t)} \le \frac{2\delta}{\sin^2(t)} \le \frac{\pi^2 \delta}{t^2} \le \frac{\pi^2 \delta}{C\delta} = \frac{\pi^2}{C}$$

Given $\varepsilon > 0$, we get (taking C large but fixed)

$$\left| \int_{\sqrt{C\delta} \le |t| \le \pi/2} P(x, e^{it}) \, d\nu(t) \right| \le \varepsilon$$

for all small $\delta > 0$.

Let $\delta_1 = \sqrt{C\delta}$, and let

$$\varphi(t) = P(x, e^{it}) = \frac{1 - x^2}{1 + x^2 - 2x\cos(t)}.$$

Then $\varphi > 0$, φ is even, and φ is decreasing on $[0, \pi]$. It remains to understand

$$\int_{|t| \le \sqrt{C\delta}} P(x, e^{it}) \, d\nu(t) = \int_{|t| \le \delta_1} \varphi(t) \, d\nu(t).$$

We have

$$\int_{[-\rho,\rho]} |d\nu(t)| \le \varepsilon \rho, \qquad 0 < \rho \le \delta_1.$$

Write

$$\varphi(t) = \varphi(\delta_1) + \int_{\delta_1}^t \varphi'(s) \, ds = \varphi(\delta_1) - \int_0^{\delta_1} H(s-t)\varphi'(s) \, ds,$$

where

$$H(\tau) = \begin{cases} 1 & \tau > 0 \\ 0 & \tau \le 0 \end{cases}$$

is the Heaviside function. Consider

$$\int_{[0,\delta_1]} \varphi(t) \, d\nu(t) = \varphi(\delta_1) \underbrace{\int_{[0,\delta-1]} d\nu(t)}_{\leq \varepsilon \delta_1} - \int_{[0,\delta_1]} \left(\int_0^{\delta_1} H(s-t)\varphi'(s) \, ds \right) \, d\nu(t).$$

Then

$$\left| \int_{[0,\delta_1]} \varphi(t) \, d\nu(t) \right| \leq \varphi(\delta_1) \varepsilon \delta_1 - \int_0^{\delta_1} \varphi'(s) \left(\int_{[0,\delta_1]} H(s-t) \, |d\nu(t)| \right) \, ds$$
$$\leq \varphi(\delta_1) \varepsilon \delta_1 - \int_0^{\delta_1} \varphi'(s) \underbrace{\left(\int_{[0,s]} |d\nu(t)| \right)}_{\leq \varepsilon s} \, ds$$

Integrate by parts.

$$\leq \varphi(\delta_1)\varepsilon\delta - 1 - \varepsilon \left[\varphi(s)s\right]_0^{\delta_1} + \varepsilon \int_0^{\delta_1} \varphi(s) \, ds$$
$$= \varepsilon \int_0^{\delta_1} \varphi(s) \, ds$$
$$\leq \varepsilon.$$

The contribution of $[-\delta, 0]$ is estimated similarly. We get

$$u(x) = \int P(x, e^{it}) \, d\nu(t) \xrightarrow{x \to 1^-} 0.$$

For the 2nd part of the theorem, given $\varepsilon >$, let $\psi \in C(\partial D)$ be such that $||f - \psi||_{L^1} \leq \varepsilon$. If we write $u = \mathcal{P}f$, then

$$\|(\mathcal{P}f)_r - f\|_{L^1} \leq \underbrace{\|(\mathcal{P}f)_r - (\mathcal{P}\psi)_r\|_{L^1}}_{\leq \|\mathcal{P}(f-\psi)\|_{h^1} \leq \|f-\psi\|_{L^1} \leq \varepsilon} + \underbrace{\|(\mathcal{P}\psi)_r - \psi\|_{L^1}}_{\to 0 \text{ uniformly on } \partial D} + \varepsilon.$$

We get $u_r = (\mathcal{P}f)_r \to f$ in L^1 .

27.2 The Riesz-Riesz theorem

Let $H^1 = \text{Hol}(D) \cap h^1$ (the **Hardy space**). It can be show that the representing measure of and H^1 function is absolutely continuous.

Theorem 27.2 (F. and M. Riesz⁶). Let μ be a measure on ∂D such that $\int_{[0,2\pi)} e^{int} d\mu(t) = 0$ for n = 1, 2, ... (i.e. the negative Fourier coefficients of μ vansish). Then μ is absolutely continuous.

Proof. Here is the idea. Let $f = \mathcal{P}\mu \in h^1$. The vanishing of the Fourier coefficients implies that $f \in \text{Hol}(D)$. So μ is absolutely continuous.

⁶These two were brothers. This is the only collaboration between them.